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Tailor-made temperature-dependent thermal
conductivity via interparticle constriction
Fabian A. Nutz and Markus Retsch*

Managing heat is a major challenge to meet future demands for a sustainable use of our energy resources. This
requires materials, which can be custom-designed to exhibit specific temperature-dependent thermal transport
properties to become integrated into thermal switches, transistors, or diodes. Common crystalline and amorphous
materials are not suitable, owing to their gradual changes of the temperature-dependent thermal conductivity. We
show how a second-order phase transition fully controls the temperature-dependent thermal transport properties
of polymer materials. We demonstrate four major concepts based on a colloidal superstructure: (i) control of
transition temperature, (ii) width of phase transition regime, (iii) multistep transitions, and (iv) step height of the
transition. Most importantly, this unique control over thermal conductivity is only governed by the interparticle
constriction, the particle composition, and its mesostructure. Our concept is therefore also applicable to a wide
variety of other particulate materials.
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INTRODUCTION
With increasing energy consumption and further miniaturization of
electronic devices, a need for new, space-saving, and functional
materials to manage heat arises. Recent examples report on the theory
and realization of thermal memory (1–3), thermal rectification (4–6),
dynamic insulation (7, 8), phase change materials (9), thermal cloaking
(10), and thermal switchingmaterials (11). The experimental realization
of many of these emerging applications is still a great challenge. One
major limiting factor is given by the typical power-law temperature
dependence of the thermal conductivity of most materials. For crystal-
line materials, one usually finds a power-law exponent of +3 up to the
point where phonon-phonon scattering dominates (~10% of the Debye
temperature). Beyond that point, a −1 to −3 exponent is found for in-
creasing temperatures (12). Amorphous materials merely exhibit a
monotonic increase across the entire temperature range, combinedwith
commonly one or two plateau regimes (13). To pave the way toward
advanced heat management devices and thermal logic circuits, tailor-
made materials with non–power-law but well-controlled temperature-
dependent properties are needed. For example for thermal diodes,
nonlinearity is required (12), whereas abrupt changes with a small input
of excess heat are necessary for the gate material of thermal transistors
(14). State-of-the-art materials use a first-order phase transition either
in their homogeneous bulk form (9, 14–17) or in a heterogeneous blend
(18–21) to manipulate the temperature-dependent thermal transport.
In homogeneous bulk materials, the thermal properties are governed
by the material composition, rendering it difficult to target a specific
application. Composite materials provide a higher degree of flexibility,
owing to the selection of certain material combinations.

Quite importantly, the temperature-dependent properties of a
material can additionally be strongly influenced by the underlying
micro- and nanostructure (22, 23). Prime examples are colloidal crystals,
which have received much attention, predominantly within the field of
photonics (24–27), phononics (25, 28, 29), or as template structures
(30–32). Highly defined colloidal superstructures are accessible in a
simple and scalable way by established fabrication methods (30–32).
Colloidal crystals represent a significantly underexplored field with re-
spect to their thermal transport properties. When going through the
second-order phase transition, namely, the glass transition temperature
of the constituting polymer, the increase in polymer mobility leads to a
loss of the particulate nanostructure. Consequently, the thermal con-
ductivity increases sharply (33). The versatile structural fabrication
can be complemented by specific particle design to add further func-
tionality to the colloidal ensemble. This allows to widely program the
thermal transport properties to a specific need.

Here, we demonstrate the vast potential of constriction-controlled
thermal transport through particulate ensembles. We choose polymer
colloidal crystals as a case study to specifically tune temperature-
dependent thermal conductivity.We emphasize that this tuning is sole-
ly based on geometric constriction. Precisely, thermal conductivity is
governed by the thermally induced changes of the nanosized interpar-
ticle contact area between adjacent particles in a close-packed colloidal
superstructure. Figure 1 outlines the unique possibilities provided by
constriction-controlled thermal transport.We demonstrate four key as-
pects, which are of paramount importance for future heat management
devices and become accessible for the first time via our concept: (i) ad-
justment of the (second-order) phase transition to a desired tem-
perature (Fig. 1B); (ii) tuning of the phase transition range (Fig. 1C);
(iii) introduction of multiple discrete transition steps (Fig. 1D); and
(iv) controlling of the degree of transition change (Fig. 1E).

We show how to program the described transition behavior of
these assemblies by adjusting the thermal properties of the polymer
particles and by selecting a suitable mesoscopic colloidal crystal ar-
chitecture. Our system is based on copolymer particles consisting of
n-butyl methacrylate (n-BA) and methyl methacrylate (MMA). By
adjusting the n-BA content of the particles, it is possible to control
the glass transition temperature of the copolymer (26).
RESULTS
Adjustment of the phase transition to the
desired temperature
We start by tailoring the onset transition temperature of the thermally
inducible increase of the thermal conductivity. Therefore, highlymono-
disperse n-BA-co-MMA particles having different glass transition
temperatures and a nearly equal diameter (182 to 223 nm; table S1,
set-1) were synthesized. The particle self-assembly typically yields
1 of 8

http://advances.sciencemag.org/


SC I ENCE ADVANCES | R E S EARCH ART I C L E

 on January 14, 2018
http://advances.sciencem

ag.org/
D

ow
nloaded from

 

freestanding disk-shapedmonoliths with a diameter of ~20 mm and a
thickness of several hundred micrometers. Optical and scanning elec-
tron microscopy (SEM) images of the split edges of these monoliths
are shown in Fig. 2A.

A strong opalescence is visible throughout the entire monoliths
based onBragg reflection (34, 35). This indicates a high-crystalline order
of the particles within the specimen.Different reflectivity colorswithin a
monolith arise from various crystal planes exposed to the surface. The
slightly varying colors between the different monoliths are based on the
size dependency of theBragg reflection. SEM images confirm the optical
microscopy impression. The polymer particles arrange into a well-
defined, close-packed face-centered cubic symmetry. Overall, the
samples can be regarded as fully crystalline.

Figure 2B shows the temperature-dependent heat capacity of the
synthesized copolymers with a varying MMA content of 70, 80, 90,
and 100%. The absolute heat capacity increases with increasing n-BA
content. The systematic shift of the glass transition from 54°C (70 vol-
ume % MMA) to 127°C (100% MMA) further proves the successful
random copolymerization. In general, copolymers having a glass tran-
sition temperature between theTg of pure poly(n-BA) (−49°C) and pure
poly(MMA) (125°C) are accessible via the random copolymerization of
these twomonomers. This leaves ample degrees of freedom to tailor the
temperature response toward specific needs in a broad ambient tem-
perature range.
Nutz and Retsch, Sci. Adv. 2017;3 : eaao5238 17 November 2017
The thermal conductivity data are summarized in Fig. 2C. All sam-
ples show a sharp, step-like increase of the thermal conductivity near the
glass transition temperature of the corresponding polymer. At this
point, the interparticle contact points enlarge and the porosity within
the sample vanishes, resulting in a strongly increased thermal conduc-
tivity. The kinetics of this transition have been examined elsewhere (36).
In all cases, a sharp increase in thermal conductivity by at least 200%
could be programmed to a specific temperature, simply by controlling
the second-order phase transition of the constituting polymer. The ef-
fective thermal conductivity through a colloidal crystal depends on the
size of the constituting latex particles. This will be investigated and dis-
cussed in another contribution. However, the width of the step-like
transition is hardly affected by the particle size, which can also be
inferred from a previous publication (33). To rule out size effects as
much as possible, we only worked with two sets of particles with sizes
around 200 and 420 nm.

Tuning of the phase transition range
For a seamless adjustment of the thermal conductivity between the pris-
tine (<100 mWm−1 K−1) and the sintered state (>200 mWm−1 K−1), a
random coassembly of two particle types with comparable size can be
used (Fig. 3A).

We demonstrate this capability with a Tg,2 = 103°C and Tg,1 = 61°C
particle with 403- and 434-nm diameters, respectively. The indicated
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Fig. 1. Key aspects for heat management devices and their realization based on constriction-controlled thermal transport in colloidal assembly structures.
(A) By exceeding Tg, the thermal conductivity irreversibly increases based on the enlargements of contact points during particle sintering. (B) The transition tempera-
ture can be tailored by assembling the crystal from particles having different Tg. (C) The random coassembly of equal-sized particles but different Tg results in a broad
transition. (D) Multiple transition steps can be introduced by a discrete layer-by-layer assembly. (E) The height of the transition steps is controllable by the thickness of
the respective layer.
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particle ratios represent numbermixing ratios of the binary particle dis-
persions. Number and volume ratios can be treated equivalently here
due to the comparable particle size and density. Because of the almost
equal size of the particles, the overall crystallinity of the colloidal ensem-
ble is preserved. This can be inferred from the bright opalescent colors
in the side-view optical micrographs (Fig. 3B). The initial and final tem-
perature of the transition can be freely chosen on the basis of the Tg of
the constituting particles.Whereas the crystalsmade fromonly one par-
ticle type (Fig. 3C, blue/red) show the familiar sharp increase in thermal
conductivity, the coassembled colloidal crystal shows a broad, linear in-
crease from the lower to the higher Tg (Fig. 3C, orange circles). This
trend is also readily confirmed in the thermal diffusivity data (fig. S3).
It is therefore inherent to thermal transport changes within the colloidal
crystal and does not originate from variations in the density or specific
heat capacity used to calculate thermal conductivity [differential
scanning calorimetry (DSC) data are given in fig. S1]. We ascribe this
broad transition to the following reason. By exceeding the first Tg, the
Nutz and Retsch, Sci. Adv. 2017;3 : eaao5238 17 November 2017
lower Tg particles deform and thereby increase the contact area to the
surrounding higher Tg particles. In addition, clusters and probably per-
colating trusses of the already softened component may form at this
stage. Still, a skeleton of the higher Tg particles partially retain the struc-
ture and prevents a sharp increase of the thermal conductivity. By fur-
ther increasing the temperature, the lower Tg particles become softer,
and the polymer chains becomemoremobile. This can lead to a further
increase of the interparticle contact area and progressively results in a
dense film formation. In addition, the softening of the higher Tg parti-
cles starts to set in. Ultimately, by exceeding the glass transition tem-
perature of the higher Tg particle, the remaining structure vanishes
completely, and the bulk thermal conductivity of the polymer film
(~200 mW m−1 K−1) is obtained. The gradual film formation process
can be inferred from SEM cross section images recorded after annealing
at 60°, 80°, and 100°C (fig. S6). Thus, a continuous adjustment of the
thermal conductivity is possible via a simple binary colloidal crystal and
the gradual loss of the constricting interparticle contact points. Note
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Fig. 2. Thermal conductivity of polymer colloidal crystals having different Tg. (A) Optical and SEM images of the split edges of the assembled crystals. The strong
opalescence indicates a long-range crystalline order within the freestanding monoliths. The high crystallinity is confirmed by the corresponding SEM images. (B) Specific heat
capacity of the synthesized copolymer particles. With increasing MMA content, the Tg of the polymer is shifted to higher temperatures. (C) Temperature-dependent thermal
conductivity of polymer colloidal crystals from particles having different Tg (heating and cooling cycle). By adjusting the copolymer composition, it is possible to tailor the
transition temperature systematically. Error bars represent the SD derived from three individual measurements. Closed symbols represent the heating cycle; open symbols
represent the cooling cycle.
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thatwe also prepared binary colloidal crystals with variousmixing ratios
(fig. S4). However, these retain a sharp transition feature at theTg of the
majority component. This hints toward the importance of cluster and
percolation formation, which we observed for the 50%:50% mixture.

Introduction of multiple discrete transition steps
To program distinct steps into the temperature-dependent thermal
conductivity, we fabricated more intricate colloidal superstructures.
Therefore, we used filtration, which easily allows fabricating layered
colloidal ensembles. Filtration represents a much faster self-assembly
method compared to the evaporation-induced self-assembly. However,
this comes at the expense of the long-range crystalline order (fig. S5A).
Nevertheless, filtration provides direct access to tailor-made colloidal
superstructures in a layer-by-layer fashion. Thus, we fabricated multi-
layered, freestanding colloidal monoliths in which every layer con-
sisted of particles with a predefined Tg. We demonstrate the thermal
transport properties of three particles of ~420-nmdiameter withTg,1 =
61°C, Tg,2 = 103°C, and Tg,3 = 124°C. This introduces multiple
transition steps of the thermal conductivity by a discrete sintering of
the individual layers at the respective Tg. The schematic structure for
these monoliths is illustrated in Fig. 4A.

The temperature-dependent thermal conductivity of colloidal as-
semblies consisting of one, two, and three particle layers is illustrated
in Fig. 4B. In contrast to the randomly mixed binary colloidal crystal
discussed above (Fig. 3), the discrete layer assembly evokes distinct steps
in the thermal conductivity profile. This is based on the sintering of the
homogenous, individual layer at its corresponding Tg. The unmolten
Nutz and Retsch, Sci. Adv. 2017;3 : eaao5238 17 November 2017
layers remain in their pristine state. Exceeding the Tg of the remaining
layers results in a further, multistep increase of the effective thermal
conductivity of the entire ensemble. Conceptually, an arbitrary number
of distinct steps could be introduced in this fashion to a particulate ma-
terial. We demonstrate a three-step material by layering three particle
types. The respective transition temperatures coincide with the pre-
determined Tg (Fig. 4B, orange).

Controlling the degree of transition change
Finally, it is also important to control how much thermal conductivity
will change upon crossing a specific temperature. Building upon our
experience of the multilayered structure introduced above, we con-
ceived a suitable colloidal architecture. This is achieved by adjusting
the layer thicknesses within a two-layer assembly. The structure of these
assemblies is schematically sketched in Fig. 5A. Our sample consists of
two particles (Tg,1 = 61°C and Tg,2 = 124°C).

On the basis of the amount of particle dispersion used in the filtra-
tion process, it is readily possible to adjust the thicknesses of the different
layers within the final assembly. Figure 5B shows the temperature-
dependent thermal conductivity of three different colloidal assemblies
with varying thickness ratios between both particle layers. The layer
thickness of the higher Tg particle layer increases from left to right.

Although a strong increase of the thermal conductivity at the lower
glass transition temperature (Fig. 5B, left, blue arrow) is visible for
monoliths containing only a thin layer of highTg particles, this behavior
reverses for assemblies containing a thick layer of high Tg particles
(Fig. 5B, right, red arrow). Consequently, this concept allows for a
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precise adjustment of the target thermal conductivity after exceeding a
specific temperature—simply by controlling the relative amount of
material changing from insulating to a more conducting state. Further-
more, this could also be extended to three or more layers.

Finally, we want to demonstrate that the four fundamental concepts
outlined so far can be combined with each other. This gives even more
degrees of freedom to design any specific temperature-dependent
thermal conductivity profile. We therefore chose a two-layer assembly,
combining the evaporation-induced self-assembly of a randommixture
with the filtration-aided buildup of a layered structure. A schematic
Nutz and Retsch, Sci. Adv. 2017;3 : eaao5238 17 November 2017
sketch of the intended colloidal architecture is shown in Fig. 6, as
well as the temperature-dependent thermal conductivity of such an
assembly. Optical microscopy images of this structure are shown in
fig. S5B.

The bottom layer consists of a crystalline coassembly of two equally
sized particles with Tg,1 = 103°C and Tg,2 = 61°C (equal to the assembly
shown in Fig. 3C). The top layer comprises only one particle type Tg,3 =
127°C and is not crystalline due to the faster filtration self-assembly
process. With this architecture, it is possible to tailor the thermal con-
ductivity to show a broad transition between 60° and 100°C, analogous
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to Fig. 3, and a sharp, step-like increase of the thermal conductivity at
~125°C, similar to Fig. 2. The respective step heights are governed by
the relative layer thicknesses of the two components.
 on January 14, 2018
.sciencem

ag.org/
DISCUSSION
These four concepts show that colloidal assembly structures can control
the temperature-dependent thermal transport properties with an un-
precedented degree of flexibility. This capability becomes evenmore re-
levant because the fabrication method is scalable and can be flexibly
adapted to othermaterials too. This allows introduction of further func-
tional properties. Furthermore, the constriction-controlled thermal
transition represents a purely solid-state transition, with no liquids
involved. Although the polymer platform presented here does not allow
a reversible adjustment of the thermal properties, we are convinced that
this concept can be expanded to other material systems too. These may
then provide the required reversibility for future applications. Our find-
ings outline a general approach to specifically tailor the temperature-
dependent thermal conductivity of a nanostructuredmaterial.Wewant
to stress the high relevance of the interparticle contact points, which is
the first ingredient to allow this impressive degree of flexibility. The abil-
ity to adjust the onset of the glass transition temperature of the polymer
particles by simple chemical synthesis is the second key ingredient.
Combining these two parameters in a tailor-made colloidal super-
structure allowed us to show four key properties, which will be of
relevance for future heat management devices: (i) adjustable onset
temperature, (ii) width of transition, (iii) multistep transitions, and
(iv) height of transition steps. However, one also has to consider the
current shortcoming of this simple material composition, namely, the
irreversibility of changes to the interparticle contact area. Nevertheless,
we are convinced that this contribution will motivate more research on
thermal transport through particulate structures. This may very
likely lead to the availability of more functional particle composi-
tions, which may circumvent the irreversibility of the polymer particle
Nutz and Retsch, Sci. Adv. 2017;3 : eaao5238 17 November 2017
sintering. Furthermore, these may allow for the introduction of other
external stimuli, such as pH, solvents, light, electric currents, or electric
fields to trigger the necessary transition. Considering the inherent and
well-known photonic and phononic properties of colloidal crystals and
glasses adds even another dimension of functionality, which we did not
elaborate on in this contribution. Thus, this concept paves the way
toward a genuinely multiphysical and multifunctional heat manage-
ment material.
MATERIALS AND METHODS
MMA (99%; Sigma-Aldrich) and n-BA (≥99%; Sigma-Aldrich) were
purified by filtration over an alumina column (activated, basic,
Brockmann I, Sigma-Aldrich). Potassium peroxodisulfate (KPS;
≤99%; Sigma-Aldrich), 4-styrenesulfonic acid sodium salt hydrate
(99%; Sigma-Aldrich), and acrylic acid (AA; 99%; Sigma-Aldrich) were
used as received. Ultrapure water was taken from aMillipore Direct-Q
3 UV unit and was used throughout the entire synthesis.

Particle synthesis
Polymer particles were synthesized by emulsifier-free emulsion polym-
erization (37, 38). In a typical synthesis, 50 ml of the monomer mixture
(for example, 40-ml MMA/10-ml n-BA for 20 volume % n-BA parti-
cles) and 450ml of ultrapurewaterwere charged in a three-necked flask,
heated to 75°C, and equilibrated for 15 min under a slight argon flow.
Subsequently, 2 ml of AA was added to the mixture followed by a fur-
ther equilibration step of 5 min. The polymerization was initiated by
adding 150 mg of KPS, dissolved in 5 ml of ultrapure water. The reac-
tion was carried out overnight. For purification, the particle dispersion
was dialyzed against ultrapure water for 5 days, changing the water
twice a day. The diameters and glass transition temperatures of the
synthesized particles are summarized in table S1. Almost equal-sized
particles with varying n-BA content have been synthesized (set-1,
~200 nm; set-2, ~420 nm).

Crystal assembly
The colloidal crystals were fabricated by evaporation-induced self-
assembly, by filtration, or by a combination of both techniques.
Evaporation-induced self-assembly of a given amount of particle dis-
persion yields disk-shaped, highly crystalline colloidal monoliths with
a diameter of ~20 mm. Particle assembly by filtration was carried out
to fabricate multilayered, colloidal monoliths by sequential filtration
of different particle dispersions. After the filtration of the last layer, the
specimens were allowed to dry overnight under ambient conditions.
Dynamic light scattering
Dynamic light scattering was performed on diluted particle dispersions
on aMalvern Zetasizer with 175° backscattering geometry to obtain the
hydrodynamic diameter and the size distribution of the synthesized
particles.
Light microscopy
The edges of the split colloidal crystals were investigated on a Carl Zeiss
Axio Imager.A2m bright-field light microscope equipped with an
AxioCam ICc 1 camera to study the macroscopic order within the
fabricated colloidal monoliths.
Scanning electron microscopy
SEMwas performed on a Zeiss Leo 1530 electron microscope to obtain
the hard sphere diameter of the particles. Furthermore, SEM images
along the edges of the split colloidal crystals were obtained to get an idea
of the particle ordering within the interior of the monoliths.
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Laser flash analysis
Laser flash analysis was conducted on a Linseis XFA 500 Xenon Flash
apparatus equippedwith an InSb infrared detector. The sample surfaces
were coated with a thin layer of graphite (<15 mm) on the bottom and
top sides. Themeasurementswere conducted in heliumatmosphere at a
pressure of 980mbar. Themeasurement was fitted with the radiation fit
model provided by the software Aprosoft Laser Flash Evaluation v.1.06.
Three measurements were performed at every temperature to obtain a
mean thermal diffusivity of every individual sample. For data evalua-
tion, themean thermal diffusivity of three individual samples was taken
into account. Because of the changes in thickness of the sample during
sintering, the thickness of the samples has to be corrected accordingly.
Further details are provided in the Supplementary Materials (39, 40).
Density determination
The density of the pristine crystals was obtained by determining the
mass and volume of themonoliths. Themass was obtained by weighing
the crystals. The volume was determined on a Keyence VR-3100 3D
digital macroscope. The density of the molten crystals was measured
by a buoyancy balance according to the Archimedes principle.
Differential scanning calorimetry
DSC was performed on a TA Instruments Q1000 differential scanning
calorimeter according to ASTM E1269.

Three individual measurements were performed under a nitrogen
flow of 50 ml min−1 at a heating rate of 20 Kmin−1. Two heating cycles
were conducted between−40° and 200°C. The specific heat capacitywas
extracted from the second heating cycle.
 on January 14, 2018
ances.sciencem
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SUPPLEMENTARY MATERIALS
Supplementary material for this article is available at http://advances.sciencemag.org/cgi/
content/full/3/11/eaao5238/DC1
Description of XFA evaluation
table S1. Hydrodynamic diameter dh, polydispersity index (PDI), hard sphere diameter d(sem),
and glass transition temperature Tg of particles used in this study.
fig. S1. Temperature-dependent specific heat capacity of the investigated samples.
fig. S2. Temperature-dependent thickness and density of co-assembled colloidal crystals.
fig. S3. Temperature-dependent and thickness-corrected thermal diffusivity of the measured
colloidal specimens.
fig. S4. Temperature-dependent thermal conductivity of coassembled colloidal crystals from
two particles having a Tg of ~61° and ~103°C.
fig. S5. Optical micrographs of a two-layer colloidal monolith made by filtration, and a
two-layer monolith fabricated by a combination of evaporation-induced self-assembly and
filtration.
fig. S6. SEM cross section images of the gradual film formation of crystalline binary assemblies.
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