This is an Accepted Manuscript, which has been through the Royal Society of Chemistry peer review process and has been accepted for publication.

Accepted Manuscripts are published online shortly after acceptance, before technical editing, formatting and proof reading. Using this free service, authors can make their results available to the community, in citable form, before we publish the edited article. We will replace this Accepted Manuscript with the edited and formatted Advance Article as soon as it is available.

You can find more information about Accepted Manuscripts in the Information for Authors.

Please note that technical editing may introduce minor changes to the text and/or graphics, which may alter content. The journal’s standard Terms & Conditions and the Ethical guidelines still apply. In no event shall the Royal Society of Chemistry be held responsible for any errors or omissions in this Accepted Manuscript or any consequences arising from the use of any information it contains.

This article can be cited before page numbers have been issued, to do this please use: J. Xu, H. Zhou, X. Wang, T. T. Lin, J. Song and B. Z. Tang, Polym. Chem., 2016, DOI: 10.1039/C6PY01358A.
Poly(triphenyl ethene) and poly(tetraphenyl ethene): Synthesis, aggregation-induced emission property and application as paper sensors for effective nitro-compounds detection

Hui Zhou,† Xiaobai Wang,† Ting Ting Lin, Jia Jing Song, Ben Zhong Tang* and Jianwei Xu**

Two unique aggregation-induced emission (AIE) active polymers poly(triphenyl ethene) (PTriPE) and poly(tetraphenyl ethene) (PTPE), comprising sole repeating units triphenyl and tetraphenyl, respectively, were synthesized through Suzuki coupling of (2,2-dibromoethene-1,1-diyl) dibenzene and related di-boronic acid or ester compounds. The polymers PTriPE and PTPE had number-molecular weights (10,100-17,400) with polydispersity indices of 1.5-1.7, and they were soluble in common organic solvents. The polymers in THF/H2O mixtures were able to form remarkably stable nanoparticles and no agglomeration was observed even when stored at 4 °C for several months. The polymer PTriPE and PTPE exhibited much more significant AIE activities when compared to their corresponding small AIE molecule 1,1,2,2-tetraphenylethylene (TPE) and 4,4′-(2,2-diphenylethene-1,1-diyl)dibiphenyl (DPDB) in THF-H2O mixtures. The fluorescence of polymer nanoparticles in THF/H2O mixture could be significantly quenched by various nitro-compounds, and PTPE nanoparticles demonstrated better fluorescence quenching response than PTPE. The film formed by PTriPE nanoparticles showed reasonable fluorescence quenching response to nitro-compounds, for example, ~ 5 ppb in the case of 2,4,6-trinitrotoluene vapor, despite its thickness approaching to a micrometer level. Furthermore, PTriPE-based paper sensors were fabricated from its polymer nanoparticles solution, and is still effective with a polymer surface concentration of low down to 1.0 µg cm⁻² in detecting various nitro-compounds in a scale of less than 1 ng, making it a useful tool to offer a quick, inexpensive and most importantly highly sensitive detection for nitro-compounds based explosives.

Introduction

Explosives detection has been becoming an increasingly crucial task for public security and cumulative worldwide terrorism theateat. Nitro-substituted organic compounds are a common class of highly-explosive chemicals, and nitro-aromatics, especially 2,4,6-trinitrotoluene (TNT), are the major military explosives and abused worldwide. Various instrumental analytical methodologies have been developed for the explosive detection.¹-⁷ For example, the Environmental Protection Agency (EPA) protocol SW-846 Method 8330a involves the use of reverse-phase HPLC with UV detection. However, these detection methods are always very costly and time-consuming, and more importantly, are not portable for on-site detection.

Fluorescence technology has been received much attention for explosive detection in the past few decades, due to its ultra-high sensitivity, high efficiency.⁸-¹⁰ Thin films fabricated from conjugated polymers are applied for the vapor detection of explosives due to their exciton migration effects.¹¹ However, the performance of most thin film is restricted by its dependence on thickness, due to the fact that diffusion of analyte vapor in poorly porous rigid films is extremely slow.¹² A pentiptycene-based polymer film with thickness of 2.5 nm shows near 4-fold higher fluorescence quenching efficiency on TNT vapor than that of thicker film (25 nm).¹³ A lot of research groups have been attempting to solve this issue by increasing the porosity of the film. We have also demonstrated that porous films obtained by electrospinning AIE active copolymers show strong response to vapor of nitro-compounds.¹⁴ The porous films of AIE active polymer exhibit less dependence of quenching efficiency on film thickness despite thickness as high as several hundred nanometers.¹⁵

Herein, we reported two structurally exceptional polymers entirely constructed by commonly-used AIE active moieties TPE or triphenyl without including any linkages, co-monomers or flexible chains. To our knowledge, these two polymers are surprisingly not reported although a huge number of TPE-containing copolymers have been synthesized.¹⁶ These two polymers were readily synthesized though Suzuki coupling reaction and their fluorescence...
quenching response to nitro-compounds was studied. The paper sensors fabricated by absorbing the polymer nanoparticles onto a piece of filter paper showed high sensitivity for contamination of solid nitro-compound particles, hence, providing a useful tool to detect nitro-compound contamination for practical applications.

Results and Discussion

Synthesis and characterization of polymer

The synthetic routes leading to PTriPE and PTPE are shown in Scheme 1. The starting material (2,2-dibromoethene-1,1-diyldibenzenes (I) was prepared from benzophenone and tetrabromomethane according to reference.15 PTriPE and PTPE were prepared from a mixture of compound I and a related diboronic acid or diboronic ester through the Suzuki coupling reaction with reasonable yields of 76% and 74%, respectively. The PTriPE and PTPE were obtained by re-precipitation twice in methanol, followed by Soxhlet extraction with different solvents, including hexane, EtO and MeOH. They are soluble in most organic solvents, such as tetrahydrofuran (THF), dichloromethane, chloroform, etc. The molecular weights of those two polymers were determined by gel permeation chromatography (GPC) using polystyrene as the standards and the data are listed in Table 1. The polymers show reasonable molecular weights of 15,200 and 29,600 Dalton with the polydispersity index of 1.5 and 1.7, respectively. PTriPE and PTPE displayed high thermal stability with T_g around 400 °C under N$_2$ (Fig. 5).

Table 1. Properties of PTriPE and PTPE.

<table>
<thead>
<tr>
<th>Unit</th>
<th>Yield (%)</th>
<th>M_w (10^3)</th>
<th>M_n (10^3)</th>
<th>PDI</th>
<th>T_d (in N$_2$)</th>
<th>T_g (in N$_2$)</th>
</tr>
</thead>
<tbody>
<tr>
<td>PTriPE</td>
<td>76</td>
<td>15.2</td>
<td>10.1</td>
<td>1.5</td>
<td>402</td>
<td>163</td>
</tr>
<tr>
<td>PTPE</td>
<td>74</td>
<td>29.6</td>
<td>17.4</td>
<td>1.7</td>
<td>400</td>
<td>193</td>
</tr>
</tbody>
</table>

M_w = mass average molar mass, M_n = number average molar mass, PDI = polydispersity index, T_d = decomposition temperature, T_g = glass transition temperature.

Aggregation-induced emission

PTriPE and PTPE were almost non-emissive when dissolved in THF. As shown in Fig. 5, when compared with small molecules TPE and DPDB, the significant redshifts by 21 nm and 42 nm in the UV-vis spectrum are observed for PTriPE and PTPE respectively, due to the longer conjugated structure in polymers. The fluorescence of polymers would be turned on by addition of poor solvents such as H$_2$O. As shown in Fig. 1, PTriPE started to be emissive obviously when the H$_2$O content was more than 40%. In contrast, monomeric TPE only emitted weak fluorescence when the H$_2$O content reaches 80%. PTriPE emitted stronger fluorescence by 38.3-fold than TPE with the same weight percentage in the THF/H$_2$O (1:9 v/v) (Fig. 5c).

The mixtures of polymer in THF/H$_2$O were visually transparent without any precipitants. The polymer particles started to form when H$_2$O content is 10%, and the particle sizes were gradually reduced from 1250 to 300 nm until H$_2$O content reaches 90% (Fig. 2a). This observation is consistent with the AIE mechanism, in which the stronger aggregation of particle leads to stronger fluorescence. The fluorescence quantum yields of polymers are summarized in Table 2. PTriPE and PTPE in THF exhibit negligibly small Φ_f values, being 0.04% and 0.74% respectively. In the mixture of THF/H$_2$O (1:9 v/v), the Φ_f values of PTriPE and PTPE rise up to 14.39% and 18.07% respectively, which are lower than the reported Φ_f values of TPE-containing conjugated polymers (18%, 28% and 64%).14c The lower Φ_f efficiencies may be resulted from planarization effect. Typically, conjugated materials prefer to form planar conformation in the excited state compare to their ground state. However, as shown in Fig. 4, the optimized polymer structures exhibit a highly twisted geometry even in the excited state, in which the steric effect of the neighbouring bulky phenyl groups inhibit planarization of the polymer structure, leading to relatively low Φ_f efficiencies.14a

Fig. 1 Fluorescence spectra of PTriPE in THF/H$_2$O mixtures with different H$_2$O contents (H$_2$O = 332 nm, [PTriPE] = 100.0 µg·mL$^{-1}$, inserted photos are PTriPE solutions taken under UV radiation (436 nm)).
The electrochemistry of PTriPE and PTPE were studied by cyclic voltammetry (CV) using a three-electrode system with LiClO₄ solution in anhydrous THF (0.1 M). The glassy carbon was used as the working electrode, the platinum wire was the counter electrode, and the Ag/Ag⁺ was the reference electrode (0.1 M). As shown in Table 2, the HOMO levels of PTriPE and PTPE were calculated to be -5.50 and -5.66 eV using the reported equation -\((E_{\text{ox}} + 4.70)\)\(^{16}\) in which the \(E_{\text{ox}}\) of PTriPE and PTPE were found to be 0.80 and 0.96 eV. Thus, the band gaps of PTriPE and PTPE were calculated from their onset wavelengths of UV absorption to be 3.08 and 3.12 eV, respectively.

The structures of oligomers PTriPE and PTPE were modulated using density functional theory (DFT). As shown in Fig. 4, the HOMO of PTriPE is dominated by the TPE orbitals, and the TPE units are conjugated each other. However, when the repeating units of the oligomer are increased to hexamer, their phenyl rings contribute weakly to the HOMO energy levels. All the oligomers have similar LUMO, which are also dominated by the TPE orbitals. The DFT calculated energy

Table 2. Optical and electrochemical properties of PTriPE and PTPE.

<table>
<thead>
<tr>
<th>Unit</th>
<th>(\lambda_{\text{abs}}) (nm)</th>
<th>(\lambda_{\text{ex}}) (nm)</th>
<th>(\Phi_{\text{soln}}) (%)</th>
<th>(\Phi_{\text{aggre}}) (%)</th>
<th>(E_{\text{ox}}) (eV)</th>
<th>HOMO</th>
<th>LUMO</th>
<th>(E_g) (eV)</th>
</tr>
</thead>
<tbody>
<tr>
<td>PTriPE</td>
<td>332</td>
<td>493</td>
<td>0.04</td>
<td>14.39</td>
<td>0.80</td>
<td>-5.50</td>
<td>-2.42</td>
<td>3.08</td>
</tr>
<tr>
<td>PTPE</td>
<td>334</td>
<td>480</td>
<td>0.74</td>
<td>18.07</td>
<td>0.96</td>
<td>-5.66</td>
<td>-2.54</td>
<td>3.12</td>
</tr>
</tbody>
</table>

\(\lambda_{\text{abs}}\) = absorption in THF, \(\lambda_{\text{ex}}\) = emission maximum in THF/H₂O (1:9 v/v), \(\lambda_{\text{onset}}\) = onset absorption wavelength, \(\Phi_{\text{soln}}\) = FL quantum yields in THF, \(\Phi_{\text{aggre}}\) = quantum yield in THF/H₂O (1:9 v/v), [C] = 1 × 10⁻⁵ M. \(^{16}\)The data were calculated by the equation: \(E_g = 1240/\lambda_{\text{onset}}\), LUMO = HOMO + \(E_g\).
band gaps of hexamers (3.36 and 3.49 eV) are higher than that of experimental values (3.08 and 3.12 eV), which may indicate that the longer conjugation structures exist in PTriPE and PTPE than DFT modulated.

![Graph showing concentration-dependent fluorescence quenching of PTriPE and PTPE by PA.](image)

Fluorescence quenching of polymer nanoparticles by nitro-compounds

The polymer nanoparticles of PTriPE in THF/H₂O mixture emitted strong fluorescence in the range of 400-600 nm centred at 480 nm (Fig. 1 and Fig. 3). The fluorescence quenching of the polymer was due to electron-transfer between the polymer and nitro-compounds. Nitro-compounds with a relatively low LUMO energy level can accept an exited state electron from the polymer, and thus quench fluorescence of the polymer. In this case, PA was first chosen as an analyte in the fluorescence quenching experiment due to its lowest LUMO energy among common nitroaromatics. Significant fluorescent quenching for PTriPE was observed after adding PA ([PA] = 0 - 100 µg·mL⁻¹) in THF/H₂O immediately (Fig. 5a). The fluorescence quenching efficiency reaches to 97% when the PA concentration is up to 50 µg·mL⁻¹. When the PA concentration is less than 40 µg·mL⁻¹, the Stern-Volmer plots of PTriPE is almost linear with a quenching constant of 1.80 × 10⁵ M⁻¹, which is almost 10-fold higher than 1.22 × 10⁴ M⁻¹ of PTPE and also much higher than that of reported polymers (4.27-9.72 × 10⁴ M⁻¹). In addition, the quenching constant of PTriPE for TNT, DNT and NT are 2.56 × 10⁴, 6.70 × 10³ and 6.65 × 10⁴ M⁻¹, respectively (Fig. 5b), which are also much higher than that of PTPE (Fig. S4). The larger fluorescence quenching response of PTriPE to nitro-compounds is due to its higher LUMO energy level than that of PTPE and thus a larger driving force of 1.47 eV for PTriPE than that of 1.35 eV for PTPE (vide infra).

Electrospun film for detection of nitro-compounds vapours

Electrospinning is a useful method to prepare both polymer particles and fibres with diameters ranging from nanometers to micrometers. Typically, the morphology of formed substrates was affected by preparation conditions and physicochemical properties of polymer solutions. In present study, we were motivated to fabricate porous films by electrospinning solution of polymer in acetone/chloroform co-solvent.

Table 3. Properties of PTriPE, PTPE and their corresponding films.

<table>
<thead>
<tr>
<th>Polymer</th>
<th>Film</th>
<th>Fabrication method</th>
<th>Thickness (µm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>PTriPE</td>
<td>F1</td>
<td>Drop coating</td>
<td>5.51±0.36</td>
</tr>
<tr>
<td>PTriPE</td>
<td>F2</td>
<td>Spin coating</td>
<td>2.00±0.24</td>
</tr>
<tr>
<td>PTriPE</td>
<td>F3</td>
<td>Electropun</td>
<td>1.61±0.06</td>
</tr>
<tr>
<td>PTPE</td>
<td>F4</td>
<td>Electropun</td>
<td>1.54±0.16</td>
</tr>
</tbody>
</table>

Experiments were performed in duplicate and mean values were taken.
The films F1-4 were prepared from polymers solutions with 2.0 wt% in acetone/chloroform mixture (1/1, v/v) via drop-coating, spin-coating and electrospinning, respectively. The film morphology was checked by SEM as shown in Fig. 6. F1 displays a porous structure with holes ranging from 2 to 4 µm, which may be formed by the evaporation of solvents. In contrast, F2 only shows a cracked surface. F3 and F4 were fabricated by electropsun of PTriPE and PTPE respectively. In both cases, SEM images showed crumpled particles or particles with different size, which are different morphologies from those obtained from drop coating and spin coating. However, the polymer fibres with uniform nanostructure cannot be obtained although we attempted to tune the electrospinning parameters, such as needle gauge, flow rate, voltage, and distance between needles. PTriPE film prepared by electrospinning exhibits a S_{BET} value of 120 m2/g, which is near 20-fold larger than that of PTPE film prepared from drop casting ($S_{\text{BET}} = 6$ m2/g) (Fig. 5S). The obvious increase in S_{BET} value suggests that the porous structure can be efficiently fabricated by electrospinning, being consistent with the observation by SEM images.

After exposing to DNT vapour (Fig. 7a), fluorescence quenching was found immediately for porous film F3, and the quenching efficiency reached to 25% in 30 s, 68% in 2 min and 75% in 4 min. At the same condition, the quenching efficiencies of other films are all less than 28% in 4 min (Fig. 7b). Therefore, high porous film F3 has faster fluorescence response than other low porous films, which is consistent with our previous observations that the porous structure could facilitate the diffusion of the gaseous analytes inside the polymer film, thereby improving its sensitivity. However, F3 responded sluggishly to TNT vapour, and its quenching efficiency reached 18% in 30 s, 35% in 4.0 min and 69% in 20 min (Fig. 7c). The smaller quenching efficiency to TNT vapour may be due to its lower vapour concentration (ca. 5 ppb) than DNT (ca. 100 ppb). The quenching efficiency for NT vapour is only 15% in 4 min, while no response to toluene vapour, indicating F3’s good sensing selectivity to vapour of nitro-compounds.

Comparing to the fluorescence quenching efficiency of reported conjugated polymers, non-conjugated polymers and macromolecules, PTriPE film shows reasonable fluorescence quenching efficiency to TNT and DNT vapours although its thickness is several hundred folds more than that of reported polymers, indicating its less dependence of quenching efficiency on the film thickness. This may relate to the twisted structure of polymers, which easily bind with nitro-compounds and thus enhance the fluorescence quenching.

![Fig. 7 (a) Fluorescence quenching of F3 on exposure to DNT saturated vapour. (b) Fluorescence quenching of films F1-F6 on exposure to DNT saturated vapour for 4.0 min, 25 °C. (c) Time-dependent fluorescence quenching of porous film F3 on exposure to saturated vapour of TNT, DNT, NT and toluene, respectively. The inserted photos are F3 on exposure to analytes saturated vapour under UV light (365 nm) radiation, 25 °C.](image)
Paper sensor for nitro-compounds detection

For the further real application of nitro-compounds detection, a piece of Whatman filter paper was fabricated by spray-coating a polymer nanoparticles solution on the filter paper through air brush, wherein polymer nanoparticles was prepared in THF/H2O (1:9 v/v). After dry completely, the filter paper was placed under UV light (λex = 365 nm) to check its fluorescence. Fig. 8 shows the fluorescent images of paper sensor, accounting a surface concentration of polymer nanoparticles approximately as 2.0, 1.0, 0.5, 0.25 and 0.125 μg·cm⁻², respectively. Among of them, the paper sensor with surface concentration of 1.0 μg·cm⁻² exhibited strong fluorescence without defect spots, and was selected for the next test.

Comparing to the PTriPE porous film (F3) prepared by electrospinning, the paper sensor responded sluggishly to the vapor of nitro-compounds (Fig. S8-10). For example, the fluorescence of paper sensor was not totally quenched even exposure to DNT saturated vapor for 30 min. However, the paper sensor is effective for the detection of a trace amount of nitro-compounds. Fig. 9a demonstrates the nitro-compounds detection by depressing the finger (nitrile gloved) with nitro-compounds contamination to the paper sensor. Trace amounts of nitro-compound were analysed after the contaminated finger was contacted with a solid nitro-compound. Taking PA an example, the right finger was rubbed with PA powder and then wiped with tissue paper till no visible PA particulates were left, and the left finger remained clean for comparison. The right finger contaminated with a trace amount of PA, and uncontaminated left finger then simultaneously touched onto the same paper sensor for a very short period (~ 1s). The fluorescence of contaminated paper sensor was checked immediately under UV illustration (365 nm), and fluorescence quenching was clearly observed by naked eyes in a place touched by the contaminated finger (Fig. 9c). Moreover, as shown in Fig. 9d-f, other contaminated fingers by TNT, DNT and NT were positively identified through fluorescence quenching.

Finally, the detection limit of paper sensor for nitro-compounds was obtained as shown in Fig. 10. Aliquots of nitro-compound stock solutions were syringed onto Whatman filter paper (d = 55 mm). The sizes of spot were between 2 and 5 mm in diameter, to produce a surface concentration ranging from 34-128 ng·cm⁻². Finally, the surface concentration of nitro-compounds on the filter paper were controlled as 1 000, 100, 10 and 1 ng·cm⁻², respectively. Then, a layer of polymer nanoparticles, with a surface concentration approximately 1.0 μg·cm⁻² was fabricated to the contaminated filter paper via spray-coating polymer nanoparticles in THF/H2O (1:9 v/v, 1.0 μg·mL⁻¹), and allowed to dry completely. The coated filter paper was placed under UV light (λex = 365 nm) to check the
fluorescence of paper sensor. Dark spots on the paper sensor indicated fluorescence quenching by nitro-compounds. The dark spots were still very obvious even the analyze weight of 1 ng, indicating the good detecting sensitivity of paper sensor to nitro-compounds.

![Graph](image.png)

Fig. 11 HOMO and LUMO energy levels of the PTriPE and PTPE with various explosive analytes.

Conclusions

Two polymers PTriPE and PTPE fully built by TriPE and TPE, respectively, were first prepared and their AIE properties were examined. PTriPE and PTPE exhibited typical AIE properties in THF/water and their films with a few micrometers thickness were fabricated by different methods. Polymer PTriPE film fabricated by electrosprinning showed better response to nitro-aromatics in the order of DNT, TNT and NT than PTPE. Compared to the reported conjugated polymers for detection of nitro-compounds, PTriPE demonstrated less dependence of quenching efficiency on the film thickness. In addition, porous film formed via electrosprining exhibited significantly improved fluorescence quenching efficiency to nitro-compounds than their corresponding dense films. Furthermore, a PTriPE-based paper sensor prepared by absorbing polymer nanoparticles onto a piece of porous filter paper displayed very low detection limit even though the analyze scale was low down to 1.0 ng, revealing its potential practical application in detection of nitro-aromatics. The paper sensors are effective in detecting not only the nitro-compounds with high-vapor pressure, such as TNT, PA, but also nitro-compounds with low-vapor pressure, such as TNT, PA. Thus, this type of paper sensors would offer a quick, inexpensive and highly sensitive detection method for nitro-compounds-based explosives.

Experimental section

Materials

TNT was prepared from DNT according to reference. PA and DNT were purchased from Aldrich. (2,2-dibromoethene-1,1-diyl) dibenzene (1) was prepared from benzophenone and tetrabromomethane according to reference. TPE was prepared according to reference.

Instrumentation

1H and 13C NMR spectra were obtained on a Bruker DRX 400-MHz NMR spectrometer (400.13 MHz for 1H and 100.61 MHz for 13C) in CDCl$_3$ at 25 °C. All peaks are reported in ppm using tetramethylsilane (TMS) as an internal standard (0 ppm). MALDI-TOF spectrum was obtained on a Bruker Autoflex III TOF/TOF. Elemental analysis was performed on a Perkin-Elmer 240C elemental analyser. Thermal properties of polymer were analysed on a Perkin-Elmer thermogravimetric analyzer 7 via heating rate of 20 °C/min, and on a TA Instruments Differential Scanning Calorimetry 2920 via heating/cooling rate of 20 °C/min in N$_2$. The particle sizes in solution were obtained on a Brookhaven zetaplasometer with a light source of 633 nm argon ion laser. UV-vis and fluorescence spectra were performed on a Shimadzu UV3101PC UV-vis spectrophotometer and a Shimadzu fluorescence spectrometer, respectively. The Φ_f of materials were calculated based on 1×10^{-3} M quinine sulphate solution in 0.1 M H$_2$SO$_4$ ($\Phi_f = 0.55$). The gas adsorption isotherms were measured on an ASAP 2020 surface area analyser. The fluorescent image of polymer nanoparticles is taken under a Nikon Polarizing Microscope LV100POL.

Electrohydrodynamic preparation

The solutions of polymer for electrosprinning were formed though dissolving polymer in mixture of chloroform and acetone (1:1 v/v), and filtered by 0.2 µm filter before using. Processing parameters for electrosprinning are listed in Table S1. The resulting polymer substrates were place in an oven to vacuum dry at 25 °C for 24 hours before test.

Synthesis of compounds and polymers

4,4’-(2,2-diphenylmethene-1,1-diyl) dibiphenyl (DPDB), (2,2-dibromoethene-1,1-diyl) dibenzene (67.6 mg, 0.20 mmol), [1,1’-biphenyl]-4-yloboronic acid (87.1 mg, 0.44 mmol), K$_2$CO$_3$ (276.0 mg, 2.00 mol) and Pd(PPh$_3$)$_4$ (23.1 mg, 0.02 mmol) were placed in a Schlenk flask. Toluene (2.0 mL), ethanol (0.5 mL) and H$_2$O (0.5 mL) was added, then the mixture was degassed with N$_2$ for 30 min and stirred at 105 °C under N$_2$ for overnight. After cooling down, the reaction mixture was poured into H$_2$O, extracted by dichloromethane (2 x 50.0 mL). The organic phase was collected and dried over Na$_2$SO$_4$, filtered, and evaporated. The crude product was purified by chromatography over silica gel eluting with hexane/dichloromethane (8:1 v/v), giving product as an light yellow solid 73 mg (75%). 1H NMR (CDCl$_3$): δ 7.56 (d, 4H, J = 8.3 Hz), 7.38 (m, 8H), 7.31 (m, 2H), 7.11 (m, 14H). 13C NMR (CDCl$_3$): δ 144.2, 143.2, 141.1, 139.3, 132.3, 131.8, 129.1, 128.2, 127.6, 127.3, 126.9, 126.6, MALDI-TOF: [M$^+$] calc for C$_{38}$H$_{32}$O$_2$, m/z 484.22; found, m/z 484.35. IR (thin film): ν = 3051, 3029, 2919, 2848, 1816, 1570, 1520, 1478, 1415, 1386, 1374, 1327, 1278, 1267, 1219, 1156, 1084, 1046, 967, 744, 724, 694, 602, 525, 434 cm$^{-1}$. Anal. Calcd for C$_{38}$H$_{32}$O$_2$: C, 94.18; H, 5.82. Found: C, 94.09; H, 5.93.

Poly(triphenyl ethene) (PTriPE) (2,2-dibromoethene-1,1-diyl)dibenzene (338.04 mg, 1.00 mmol), 1,4-phenylenediboronic acid (165.75 mg, 1.00 mmol), K$_2$CO$_3$ (0.69 g, 5.00 mol) and Pd(PPh$_3$)$_4$ (57.85 mg, 0.05 mmol) were placed in a Schlenk flask. Toluene (16.0 mL), ethanol (4.0 mL) and H$_2$O...
(4.0 mL) was added, then the mixture was degassed with N₂ for 30 min and stirred at 105 °C under N₂ for overnight. After cooling down, the reaction mixture was poured into H₂O, extracted with dichloromethane (2 × 5.0 mL). The organic phase was collected and dried over Na₂SO₄, filtered, and evaporated. The crude product was first purified by precipitating its solution in THF (2 mL) by methanol giving PTriPE as a yellow powder (190.0 mg, 75%). ¹H NMR (CDCl₃): δ 7.69-6.97 (m, 12H), 6.73-6.69 (m, 2H). ²³⁷C NMR (CDCl₃): δ 144.0, 131.6, 131.5, 130.8, 130.7, 128.3, 127.9, 127.6, 126.6, 126.5. IR (thin film): ν = 3049, 3018, 2922, 2852, 1597, 1498, 1481, 1424, 1360, 1215, 1022, 871, 764, 735, 707, 641 and 571 cm⁻¹. Anal. Calcd for (C₉₂H₄₄O): C, 94.51; H, 5.49. Found: C, 94.37; H, 5.57.

Acknowledgements

The authors would like to acknowledge the financial support from the Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR). This work was supported by the A*STAR Computational Resource Centre through the use of its high performance computing facilities.

Notes and references

ABSTRACT:

This paper reports two structurally unique aggregation-induced emission (AIE) polymers that are fully constructed by AIE luminogen tetraphenyl or triphenyl ethene units. Their applications used for paper sensors are studied.