Polymers from Sugars and CO$_2$: Synthesis and Polymerization of a D-Mannose-Based Cyclic Carbonate

Georgina L. Gregory, Liliana M. Jenisch, Bethan Charles, Gabriele Kociok-Köhn, and Antoine Buchard*

Department of Chemistry, University of Bath, Bath BA2 7AY, U.K.

ABSTRACT: A six-membered cyclic carbonate derived from natural sugar D-mannose was prepared using CO$_2$ as a C1 building block at room temperature and atmospheric pressure. The monomer was synthesized in two steps from a commercially available mannopyranose derivative. Polycarbonates were rapidly prepared at ambient temperature by controlled ring-opening polymerization (ROP) of the monomer, initiated by 4-methylbenzyl alcohol in the presence of 1,5,7-triazabicyclo[5.4.0]dec-5-ene (TBD) as the organocatalyst. Head-to-tail regiochemistry was indicated by NMR spectroscopy and is supported by DFT calculations. These aliphatic polycarbonates exhibit high-temperature resistance and demonstrate potential for postpolymerization functionalization, suggesting future application as high-performance commodity and biomedical materials.

INTRODUCTION

The development of sustainable polymers from renewable feedstocks is important to address the dependence of most engineering and commodity plastics on fossil-based resources. Natural sugars are one such raw material attracting increased research attention as petroleum-based alternatives in polymer synthesis due to their high abundance, low toxicity, and structural diversity. In particular, carbohydrates having a cyclic structure can impart stiffness into the polymer chain, increasing the glass transition temperature. Herein, we report the synthesis and controlled polymerization of a novel cyclic carbonate monomer prepared from D-mannose and CO$_2$ which yields polycarbonates with enhanced thermal properties compared to traditional aliphatic polycarbonates.

The combination of biodegradability and biocompatibility has led to the emergence of aliphatic polycarbonates (APCs) as attractive materials for biomedical applications such as tissue engineering scaffolds and vehicles for drug delivery. However, the hydrophobicity, poor cell compatibility, and low glass transition temperatures (T_g) of unfunctionalized APCs such as poly(trimethylene carbonate) ($T_g \approx \sim 20 °C$) have instigated a drive toward the development of functionalized APCs with tailored properties. Because of their wide structural diversity and natural origin, sugar-based polycarbonates offer the potential for highly biocompatible, degradable materials as well as drawing upon renewable feedstocks.

Ring-opening polymerization (ROP) of 6-, 7-, and 8-membered (and highly strained 5-membered) cyclic carbonates is an attractive method for polycarbonate production. Compared to the polycondensation of aliphatic diols with phosgene derivatives or dialkyl carbonates, which often presents challenges in molecular weight control, developments in ROP catalysis have enabled polymerizations to proceed in a controlled fashion under mild conditions. Furthermore, advances in organocatalytic ROP have provided alternatives to traditional heavy-metal-based catalysis. By way of a sustainable approach, utilization of CO$_2$ as an abundant, safe, and renewable building block has also led to the continued development of catalysts for the synthesis of APCs by the alternating ring-opening copolymerization (ROCO) of CO$_2$ with epoxides. However, the epoxide scope can be limiting compared to the versatility of catalytic ROP methods and the wide range of functionalities offered by cyclic carbonates, which are commonly obtained by cyclocarbonation of readily available and diverse diols. Nevertheless, there are few examples reported for the ROP of cyclic carbonates bearing a carbohydrate backbone due to challenges in the cyclization of sugar-derived diols or in the polymerization itself.

Gross and co-workers reported for example the synthesis of a D-xylose-derived 6-membered cyclic carbonate using ethyl chloroformate. However, subsequent ROP of the cis-configured monomer containing a ketal-protected vicinal diol proved challenging. Rare-earth catalyst Y(OiPr)$_3$ displayed the best activity for achieving high molecular weights, reaching 13.2 kDa after 3 h at 70 °C in dioxane with a dispersity index (D) of 1.69. More recently, Woolley and co-workers showed that bis(pentafluorophenyl) carbonate and CsF were required to cyclize the trans-configured 4,6-diol in trimethyl-protected d-glucose, giving a 36% isolated yield of a bicyclic monomer after 25 h at 60 °C. Polymerization initiated by 4-methylbenzyl alcohol then proceeded readily at room temperature with organocatalyst 1,5,7-triazabicyclo[4.4.0]dec-5-ene (TBD) to...
give good control over polymer molecular weights and narrow molecular weight distributions. Thermal analysis proved promising for both polymers, revealing high T_g values of 106 and 128 °C, respectively.

Building upon our previous report for the preparation of cyclic carbonates from diols and low pressure CO$_2$ as an alternative to phosgene-based methods,14 we investigated the synthesis of D-mannose derived cyclic monomer 1 (Scheme 1).

Scheme 1. Cyclization of Protected d-Mannose Using 1 atm of CO$_2$ at Room Temperature (rt)

```
HO\(^{-}\)O\(^{-}\) | OMe
\(\text{HO}^{-}\)O\(^{-}\) | OMe
1) DBU, 1 atm CO$_2$, MeCN, rt, 2 h
2) TsCl, NEt$_3$, MeCN, 0 °C, rt, 24 h
```

Thus, both CO$_2$ and sugars would be used as safe, natural, and renewable resources in material synthesis. Furthermore, the D-mannose natural stereochemistry would combine the attractive components of both glucose- and xylose-based monomers previously reported, namely an easily ring-opened trans-cyclic carbonate and a protected 1,2-diol motif, to serve as a handle for postpolymerization modification.

RESULTS AND DISCUSSION

The monomer was readily prepared in two steps from commercially available 1-O-methyl-α-D-mannose. Following isopropylidene protection of the hydroxyl groups at the 2- and 3-positions, cyclic carbonation was achieved using CO$_2$ as a C1 synthon. CO$_2$ insertion with 1 equiv of 1,8-diazabicyclo[5.4.0]-undec-7-ene (DBU) reagent to form an ionic salt intermediate, a method of CO$_2$ capture with alcohols initially reported by Jessop et al.,15 resulted predominantly in monoisertion into the less sterically hindered primary hydroxyl group, as indicated by 13C{$_1$H} NMR spectroscopy (Figure S1 in the Supporting Information). Addition of the tosyl chloride leaving group led to formation of the monomer in 65% conversion via a nucleophilic addition-elimination pathway. High dilution conditions (0.1 mol L$^{-1}$) and cold temperatures were key in favoring the desired unimolecular cyclization over competing dimerization reactions. Isolation by column chromatography and subsequent recrystallization in diethyl ether afforded the desired compound, cyclic 1-O-methyl-2,3-O-isopropylidene-4,6-O-carbonate-α-D-mannopyranose 1 in 57% yield (compared to 36% and 41% isolated yields for the previous glucose- and xylose-based monomers that were synthesized using phosgene derivatives). Attempts to synthesize 1 using 1,1'-carbonyldimidazole or CO$_2$ over CeO$_2$ as reported by Honda et al.16 proved unsuccessful, giving 0% conversion. Confirmation of the structure by NMR and FTIR spectroscopies, as well as electrospray ionization mass spectrometry, was further corroborated by single-crystal X-ray diffraction (Figure 1 and Figures S2–S8).

Figure 1. ORTEP17 view of the crystal structure of 1 with key atoms labeled. Displacement ellipsoids at the 50% probability level.18

Selected bond lengths (Å) and angles (deg): C(1)–O(1) 1.198(2), C(1)–O(2) 1.333(2), C(1)–O(3) 1.341(2), O(1)–C(1)–O(2) 120.38(14), O(1)–C(1)–O(3) 119.57(15), O(2)–C(1)–O(3) 120.05(14), C(2)–C(3)–C(11)–O(3) 56.10(15).

Figure 2. 1H NMR spectra of monomer 1 (bottom) and polymer 2 (top) in CDCl$_3$.

Copy (Figure 2) and number-average molecular weights (M_n) alongside dispersities (D) estimated by size exclusion chromatography (SEC) relative to polystyrene standards. The linear relationship between monomer conversion and M_n at constant monomer-to-initiator ratio coupled with consistently narrow dispersities (1.12–1.17) was indicative of a well-controlled polymerization (Figure 3). MALDI-ToF analysis revealed a linear polymer series with no evidence of decarboxylation and confirmed the expected 4-MePhCH$_2$O and OH end groups (Figure S22).

Linear plots of $\ln([1]_p/[1])$ against time at 100:1:1 and 50:1:1 [1]$_p$[TBD]$_p$[4-MeBnOH]$_p$ ratios indicated first-order kinetics in monomer concentration (k_{app} = 1.7 ± 0.1 and 9.9 ± 0.8 h$^{-1}$, respectively, Figure S28), typical of ROP. Further polymerization experiments were performed over a range of catalyst concentrations (Table 1), showing close agreement between the calculated molecular weights and those determined by SEC relative to polystyrene standards. Polymers exhibited low-molecular-weight distributions, and incorporation of addi-
The polycarbonate is characterized by a strong C=O absorption at 1757 cm\(^{-1}\) in the FTIR spectra. Conformational changes brought about by the ring strain upon opening are most evident in the \(^1\)H NMR spectrum (Figure 2) by the downfield shift of H-4 and coalescing of the signals assigned to H-6 and H-6’.

Table 1. Organocatalytic ROP of 1 by TBD with 4-Methylbenzyl Alcohol Initiator

<table>
<thead>
<tr>
<th>entry</th>
<th>([1]_0/[C]_0/[I]_0)</th>
<th>conv (%)</th>
<th>time (h)</th>
<th>(M_n) (kDa)</th>
<th>(M_n^{calc}) (kDa)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>25:1:1</td>
<td>>99</td>
<td>0.5</td>
<td>6.63</td>
<td>6.56</td>
</tr>
<tr>
<td>2</td>
<td>50:1:2</td>
<td>>99</td>
<td>0.5</td>
<td>6.26</td>
<td>6.56</td>
</tr>
<tr>
<td>3</td>
<td>50:1:1</td>
<td>>99</td>
<td>1</td>
<td>13.6</td>
<td>3.17</td>
</tr>
<tr>
<td>4</td>
<td>100:1:2</td>
<td>>99</td>
<td>1.5</td>
<td>10.8</td>
<td>13.0</td>
</tr>
<tr>
<td>5</td>
<td>100:1:1</td>
<td>47</td>
<td>0.5</td>
<td>10.7</td>
<td>12.3</td>
</tr>
<tr>
<td>6</td>
<td>100:1:1</td>
<td>>99</td>
<td>1.3</td>
<td>23.6</td>
<td>25.9</td>
</tr>
<tr>
<td>7</td>
<td>150:1:1</td>
<td>98</td>
<td>3</td>
<td>33.1</td>
<td>38.3</td>
</tr>
<tr>
<td>8</td>
<td>100:1:1</td>
<td>98</td>
<td>0.5</td>
<td>26.2</td>
<td>25.6</td>
</tr>
<tr>
<td>9</td>
<td>100:0.5:1</td>
<td>60</td>
<td>0.5</td>
<td>10.9</td>
<td>15.7</td>
</tr>
</tbody>
</table>

Polymerizations carried out in CH\(_2\)Cl\(_2\) at room temperature, with \([1]_0 = 1\) mol L\(^{-1}\); unless stated otherwise. \(^b\)C is TBD and \(I\) is 4-MeBnOH unless stated otherwise. \(^c\)Determined by relative integration of the anomeric proton on the \(^1\)H NMR spectrum in CDCl\(_3\). \(^d\)Calculated by SEC relative to polystyrene standard. \(^e\)Calculated by SEC relative to polystyrene standard with THF eluent; \(D = \frac{M_n}{M_o}\). \(^f\)Calculated as \(M_n(1) + (M_n(1) \times [1]_0/[I]_0) \times\) conv/100%. \(^g\)Melt conditions: 140 °C. \(^h\)Sn(Oct)\(_2\) catalysts (Table 1, entries 8 and 9).

The reaction mechanism between TBD, 4-methylbenzyl alcohol, and up to two molecules of 1 (to account for both initiation and propagation steps) was also examined using DFT calculations. In accordance with previous calculations, TBD acts as a bifunctional catalyst, capable of activating the carbonate monomer but also of deprotonating the growing alcohol chain. The ring-opening is then a discrete, rather than concerted, process, with TBD mediating proton transfer stepwise through tetrahedral intermediates. In agreement with the experimental findings, the initiation step was found to favor, both kinetically and thermodynamically, ring-opening to expose a secondary alcohol (Figures S40 and S41). Regardless of the regioselectivity of the initiation step, subsequent propagation from either a primary or secondary growing polymer chain shows the same bias, leading to an overall preference for head–tail linkages (Scheme 2 and Figures S42–S45). The lowest limiting energy barriers found, \(\Delta G\) of +9.2 and +13.7 kcal mol\(^{-1}\) for the initiation and propagation steps, respectively, are low enough for the reaction to proceed readily at room temperature. The overall \(\Delta G\) is calculated to be ~11.4 kcal mol\(^{-1}\) for initiation and ~1.8 kcal mol\(^{-1}\) for the propagation step. Finally, calculations indicate that the ring-opening thermodynamics of 1 are very similar to those of the \(\delta\)-glucose monomer reported by Wooley and co-workers (Schemes S1 and S10).

Figure 3. Plot of \(M_n\) (■, left axis) and \(D\) (□, right axis) estimated by SEC (RI detector) relative to polystyrene standard vs conversion of monomer 1 (determined by integration of the anomeric proton on the \(^1\)H NMR spectrum). Aliquots were taken and quenched every 10 min from a reaction in CH\(_2\)Cl\(_2\) at rt, with a \([1]_0/[TBD]_0/[4-MeBnOH]_0\) ratio of 100:1:1 and \([1]_0 = 1\) mol L\(^{-1}\). (inset) Typical SEC trace showing increase in \(M_n\) from 5.36 to 10.5 kDa (maintaining \(D = 1.15\)) upon addition of 0.5 equiv of 1 to a polymerization \([1]_0/[4-MeBnOH]_0\) = 25 at >99% conversion.

Melt conditions: 140 °C; Sn(Oct)\(_2\) catalysts (Table 1, entries 8 and 9).

The polycarbonate is characterized by a strong C=O absorption at 1757 cm\(^{-1}\) in the FTIR spectra. Conformational changes brought about by the ring strain upon opening are most evident in the \(^1\)H NMR spectrum (Figure 2) by the downfield shift of H-4 and coalescing of the signals assigned to H-6 and H-6’. In the \(^1\)C[\(^1\)H] NMR spectrum, one distinct carbonyl resonance is observed at 154.5 ppm (Figure S16) compared to the monomer signal at 147.4 ppm. This contrasts with the \(\delta\)-xylose- and \(\delta\)-glucose-based polycarbonates, for which three distinct carbonate environments (differing by 0.3–0.5 ppm) were observed and assigned to tail–tail (T–T), head–tail (H–T), and head–head (H–H) carbonate linkages (Figure S29). Their 1:2:1 ratio suggested random cleavage of the acyl–oxygen bond at either side of the carbonate carbonyl and subsequent nonselective propagation of the chain to yield regiorandom polymers. Thus, the carbonate region of 2 suggests a preference for one regiochemistry; specifically, H–T linkages as any H–H (or T–T) linkages would also entail T–T (or H–H) linkages and yield two distinct resonances. The equimolar experiment between 1 and 4-MeBnOH in the presence of 2 mol % TBD revealed (by NMR spectroscopy) an 88% preference for ring-opening to place the benzyl carbonate at the less sterically hindered primary position, leaving the secondary hydroxyl group free (Figures S30 and S31). A similar regioselective ring-opening was recently reported by Sopena et al. in the synthesis of carbamates using TBD.

The reaction mechanism between TBD, 4-methylbenzyl alcohol, and up to two molecules of 1 (to account for both initiation and propagation steps) was also examined using DFT calculations. In accordance with previous calculations, TBD acts as a bifunctional catalyst, capable of activating the carbonate monomer but also of deprotonating the growing alcohol chain. The ring-opening is then a discrete, rather than concerted, process, with TBD mediating proton transfer stepwise through tetrahedral intermediates. In agreement with the experimental findings, the initiation step was found to favor, both kinetically and thermodynamically, ring-opening to expose a secondary alcohol (Figures S40 and S41). Regardless of the regioselectivity of the initiation step, subsequent propagation from either a primary or secondary growing polymer chain shows the same bias, leading to an overall preference for head–tail linkages (Scheme 2 and Figures S42–S45). The lowest limiting energy barriers found, \(\Delta G\) of +9.2 and +13.7 kcal mol\(^{-1}\) for the initiation and propagation steps, respectively, are low enough for the reaction to proceed readily at room temperature. The overall \(\Delta G\) is calculated to be ~11.4 kcal mol\(^{-1}\) for initiation and ~1.8 kcal mol\(^{-1}\) for the propagation step. Finally, calculations indicate that the ring-opening thermodynamics of 1 are very similar to those of the \(\delta\)-glucose monomer reported by Wooley and co-workers (Schemes S1 and S10).
and S2), suggesting that the regioregularity of polymer 2 compared to its glucose counterpart is of kinetic origin. This is likely a result of the additional steric constraint imposed by the 2,3-0-isopropylidene protecting group.

The mannose polycarbonates are amorphous in character, showing no sign of crystallinity by powder X-ray diffraction (Figure S32). Evaluation of the thermal properties by thermogravimetric analysis (TGA) of representative samples coupled to a mass spectrometer showed the onset of thermal degradation at ≈170 °C, reaching a maximum degradation rate around 259 °C and resulted in 98% mass loss by 350 °C (Figure S34). Major ions detected at m/z 44 and 58 were attributed to the loss of CO2 and (CH3)2CO+, respectively (Figure S35). Differential scanning calorimetry (DSC) (Figures S36 and S37) revealed high glass-transition temperatures (Tg = 152 °C for 13.6 kDa, Table 1, entry 3), compared to reported glucose (Tg = 122 °C for 14.7 kDa)13d and xylose (Tg = 128 °C for 13.2 kDa)13e polycarbonates. The elevated Tg arises from restricted rotation about the polymer backbone, which is likely due to the rigid bicyclic nature of the protected mannose unit, and makes these materials attractive for the construction of new high-performance sustainable materials.20 Indeed, a high Tg is an important consideration in materials for tissue engineering scaffolds as it corresponds to a low free volume in the polymer network which limits the access of water, resulting in enhanced stability to hydrolytic degradation.21 Deprotection of the pendant ketol groups to expose the vicinal diol was explored by treatment of 2 in CDCl3 with 80:20 CF3COOH:H2O.22 Removal of 70% of the protecting group (determined by 1H NMR) showed no visible signs of degradation (Figure S39). SEC analysis confirmed the material to still be polymeric. Further deprotection rendered it insoluble in CDCl3 and THF, with no free monomer observed in solution. The initial fully protected polymer was insoluble in water and found to resist acid hydrolysis (HClaq 1 mol L−1) over 14 days. Detailed studies into the mechanical properties, degradation behavior, and biocompatibility of these polymers are in progress, including postpolymerization functionalization and cell-attachment work.

CONCLUSION

In conclusion, we have demonstrated the novel synthesis, using CO2, and the controlled organocatalytic ROP of a new cyclic carbonate monomer derived from d-mannose. NMR analyses supported by DFT calculations suggest the formation of regioregular polycarbonates composed of head–tail linkages. High glass transition temperatures compared to other APCs highlight the potential of these materials in future commodity and biomedical applications.

ASSOCIATED CONTENT

Supporting Information

The Supporting Information is available free of charge on the ACS Publications website at DOI: 10.1021/acs.macromol.6b01492.

Experimental and computational details; spectroscopic and crystallographic characterization data for 1; SEC traces, MALDI-ToF spectra, spectroscopic and thermal (TGA, DSC) data for 2; DFT calculations data and associated digital repositories (PDF) Structure of 1 (CIF)

AUTHOR INFORMATION

Corresponding Author
*E-mail a.buchard@bath.ac.uk (A.B.).

Notes
The authors declare no competing financial interest.

ACKNOWLEDGMENTS

The EPSRC (CDT in Sustainable Chemical Technologies/EP/L016354/1, studentships to G.L.G. and B.C.), Roger and Sue Whorrod (fellowship to A.B.), and the Royal Society (RG/150538) are acknowledged for research funding. We thank the University of Bath HPC and EPSRC NSCCS (CHEM826) for computing resources.

REFERENCES

