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Abstract: The most common methods for attaching a device to the internal tissues of the human body 

are via sutures, clips or staples. These attachment techniques require penetration and manipulation of 

the tissue. Tears and leaks can often be a complication post-attachment, and scarring usually occurs 

around the attachment sites. To resolve these issues, it is proposed to develop a soft tissue scaffold 

impregnated with Rose Bengal/Chitosan solution (RBC-scaffold, 0.01% w/v Rose Bengal, 1.7% w/v 

Medium Molecular Weight Chitosan). This scaffold will initially attach to the tissue via a light 

activation method. The light activates the dye in the scaffold which causes cross-links to form 

between the scaffold and tissue, thus adhering them together. This is done without mechanically 

manipulating the surrounding tissue, thus avoiding the issues associated with current techniques. 

Eventually, the scaffold will be resorbed and tissue will integrate for long-term attachment. 

A variety of tests were performed to characterise the RBC-scaffold. Porosity, interconnectivity, and 

mechanical strength were measured. Light activation was performed with a broad spectrum (380 – 

780nm) 10W LED lamp exposed to various time lengths (2 – 15 mins, Fluence range 0.4 – 3 J/cm
2
 ). 

Adhesive strength of the light-activated bond was measured with lap-shear tests performed on porcine 

stomach tissue. Cell culture viability was also assessed to confirm tissue integration potential. These 

properties were compared to Variotis™, an aliphatic polyester soft tissue scaffold which has proven to 

be viable for soft tissue regeneration. 

The RBC-scaffolds were found to have high porosity (86.46 ± 2.95%) and connectivity, showing 

rapid fluid movement. The elastic modulus of the RBC-scaffolds (3.55 ± 1.28 MPa) was found to be 

significantly higher than the controls (0.15 ± 0.058 MPa, p < 0.01) and approached reported values for 

human gastrointestinal tissue (2.3 MPa). The maximum adhesion strength achieved of the RBC-

scaffolds was 8.61 ± 2.81 kPa after 15 minutes of light activation, this is comparable to the adhesion 

strength of fibrin glue on scaffolds. Cell attachment was seen to be similar to the controls, but cells 

appeared to have better cell survivability. 
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In conclusion, the RBC-scaffolds show promise for use as a novel light activated attachment device 

with potential applications in attaching an anti-reflux valve in the lower oesophagus and also in 

wound healing applications for stomach ulcers. 

1 Introduction: 

Current methods for device attachment to soft tissue, often involve sutures, clips or staples (Quinn, 

2005). These devices mechanically manipulate the surrounding tissue, placing unnecessary tension on 

the tissue site. This tension usually leads to leaks or tears post-surgery (Klink et al., 2011; Márquez et 

al., 2010). On top of these issues, the healed tissue will often result in scarring (Postlethwait et al., 

1975). Biocompatible glues are an alternative adhesion method, but they often are degradable and not 

suitable for long-term fixation (Quinn, 2005). Along with the issues associated with device 

attachment, the implanted device itself can become encapsulated by fibrous tissue. This will usually 

occur if the device is not biocompatible, or is not fixed sufficiently (Sanders et al., 2000).  

Soft tissue scaffolds have become a desirable method of repairing tissue using the patient’s own cells 

(Chan and Leong, 2008). They are often biocompatible, bioresorbable, flexible and strong (O'Brien, 

2011; Place et al., 2009). Porosity, interconnectivity and mechanical strength are important properties 

for the success of tissue engineering scaffolds (Khoda and Koc, 2012; O'Brien, 2011). A scaffold 

requires high porosity so that cells can penetrate the scaffold, as well as allow for vascularisation (Loh 

and Choong, 2013). Interconnectivity of the scaffold, the degree at which pores are connected to each 

other and the external environment, is an important property. It dictates whether cells can grow 

throughout the scaffold and whether sufficient nutrient and waste can be transported in and out of the 

scaffold (Phelps and Garcia, 2008). The mechanical properties of the scaffold must be strong enough 

to withstand the stresses that are expected in vivo, but not too strong that the properties outmatch the 

surrounding tissue, creating issues with cell differentiation and stress shielding. There is a trade-off 

that must be considered between porosity and strength (Chan and Leong, 2008; Hutmacher, 2000). 

Biocompatibility and the ability to be resorbed are important for the interaction with the human body 

and its long-term use. Variotis™, is a aliphatic polyester based soft tissue scaffold that has previously 

been used for wound repair studies (Ma et al., 2010; Zhang et al., 2013). 

Rose Bengal (RB) dye is a biocompatible stain currently used most frequently for ophthalmology in 

diagnosing eye damage (Korb et al., 2008). Recently a novel use for RB dye has been described, 

taking advantage of its photoactive properties to adhere tissue after light activation (Chan et al., 

2008). Tsao et al. has shown it to be successful in healing skin wounds with visibly less scarring 

compared to traditional sutures (Tsao et al., 2012). Lauto et al. has recently shown it to be effective in 

nerve repair (Lauto et al., 2008). Barton et al. has shown that rose bengal-chitosan film has negligible 

toxicity for cells (Barton et al., 2012). The shortcoming of its current use is that it has been used as 

film, which has low strength and high elastic modulus making it stiff and unsuitable for areas with a 

lot of movement in the body (Barton et al., 2014). Another issue with its current implementation is 

that green laser (532 nm) is used to activate the RB. This is because RB has absorbance peaks at 526 

and 562 nm (Lauto et al., 2010). Using lasers has safety concerns with thermal damage to the 

surrounding tissue as well as potential eye damage to the operators (Sliney, 1995). 

A novel soft tissue scaffold was created by combining Variotis
TM

 and Rose Bengal, capable of 

adhering to tissue by simple light activation. The objective of this work was to characterise this novel 

tissue scaffold, and assess if it is appropriate for device attachment. The clinical application will be 

focussed on the gastro-intestinal tract, where there are a number of potential applications such as 

attachment of an anti-reflux valve in the lower oesophagus or patches to repair stomach perforations. 
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2 Materials/Method 

2.1 Rose Bengal – Chitosan solution 

The Rose Bengal - Chitosan solution (from here on referred to as RBC solution) was prepared 

following the method outlined by (Lauto et al., 2012). Briefly, 1.7% w/v of medium molecular weight 

chitosan was dissolved in deionised water containing 2% v/v acetic acid and 0.01% w/v Rose Bengal 

dye. The solution was stirred for 14 days at room temperature (25°C) to allow the Rose Bengal to 

dissolve, as it has poor solubility. The final RBC solution was then centrifuged at 3,270g for 1 hour at 

room temperature to remove any impurities. All processes involving the Rose Bengal were performed 

in the dark, or wrapped in aluminium foil to prevent photo-bleaching. Chan, et al. found that a 

concentration of 0.1% RB was superior for adhesive strength (Chan et al., 2002), therefore scaffolds 

made with 0.1% w/v RB were also prepared. All chemicals were sourced from Sigma-Aldrich, 

Sydney Australia. 

2.2 RBC-Scaffold synthesis 

Variotis™ scaffolds (Biometic Pty Ltd, Sydney, Australia) were prepared to the desired size of 

approximately 1.3mm thickness using a vibroslicer. The sliced scaffolds were then soaked in the 

previously prepared RBC solution overnight, and then subsequently dried over 2 weeks in a light 

shielded container. Control scaffolds were similarly prepared, but not soaked in RBC solution. 

2.3 Scaffold characterisation 

Scaffold morphology was examined with scanning electron microscopy (SEM) using a Zeiss Ultra+ 

(Carl Zeiss Microscopy GmbH, Germany) at 5 keV. The scaffolds were gold sputter coated and had 

silver painted on the edges to improve conductivity. Pore sizes were calculated from the SEM images 

using image processing software, ImageJ (National Institute of Health, MD, USA). Scaffold porosity 

was estimated using the following density calculations based on work by (Blaker et al., 2005):  

     
         
          

   
         

                   
 

(Eqn. 1) 

where  = Porosity (%),  = density (g/cm
3
), m = mass (g), and V = volume (cm

3
). 

The density of the polyester used was 1.145 g/cm
3 
(Sigma-Aldrich).  

Interconnectivity of the scaffolds was visualised using a capillarity test (Vitale-Brovarone et al., 

2008). Briefly, it involved preparing a solution made up of 30% Fetal Bovine Serum (FBS), 70% 

distilled water and a few drops of blue food colouring to help visualisation. This solution is designed 

to have a similar viscosity to interstitial body fluid. The scaffolds were carefully placed into this 

solution. The flow of the solution into the scaffold was observed and recorded on video. After two 

minutes in the solution, the scaffold was removed and placed flat on absorbent paper. The leaching of 

the solution was observed and recorded on video. Afterwards the videos were analysed using Kinovea 

video analysis software (Kinovea, France) to record time in, time out and the general appearance of 

the scaffolds. 

Further scaffold morphology analysis was performed using MicroCT with a Skyscan 1172 (Bruker 

microCT, Belgium), and the subsequent images were reconstructed and analysed using CTAn (Bruker 

microCT, Belgium). The scaffolds required Osmium Tetroxide vapour staining to improve the 
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contrast of the materials. The tensile properties of the scaffolds were measured using methods based 

on ASTM D882 - Standard Test Method for Tensile Properties of Thin Plastic Sheeting (International, 

2012). Testing was conducted in an Instron 5567 Universal Testing machine (Instron, MA, USA) 

equipped with a 100 N load cell at a strain rate of 10 mm/min. Five samples were evaluated for each 

scaffold. 

2.4 Scaffold Adhesion 

To photo-activate the scaffolds and thus adhere them to tissue, a 10 W cool white broad spectrum 

LED lamp (Jaycar Electronics, Australia) was used. The white LED was selected as it is easily 

accessible, safe, and has a broad-spectrum wavelength incorporating the 532nm green wavelength 

required to activate the photoactive dye. The LED light source was characterised by using a 

Spectrascan® PR-730 spectroradiometer (Photoresearch Inc., USA) at 0.5° aperture and a S120VC 

Power Sensor (Thorlabs Inc., NJ, USA). The scaffolds were adhered to the mucosal side of porcine 

stomach tissue. Porcine stomach tissue was chosen for its relative accessibility and itsclose 

resemblance of human gastrointestinal tissue (Swindle et al., 2012). Attachment of devices in the 

stomach is one of the potential applications, another reason for the selection of porcine stomach 

tissue. To maximise adhesion and ensure tissue contact with the surface of the scaffold, a 1 kg mass 

was placed atop the scaffold during light exposure (Figure 1). As adhesion strength was expected to 

vary depending on exposure time, a series of times were tested (2, 5, 10, and 15 minutes). During light 

exposure tissue surface temperature was measured using a temperature probe. This was conducted to 

observe any potential thermal damage. Scaffold adhesion strength was evaluated using lap-shear tests 

based on ASTM F2255 - Standard Test Method for Strength Properties of Tissue Adhesives in Lap-

Shear by Tension Loading (International, 2010). The adhesion strength was calculated using the 

equation for shear stress,        , where F was the highest force recorded before failure, and A was 

the adhesive surface area which was equal to the area of the scaffold. The scaffolds with 0.1% w/v RB 

were only tested at 2 and 10 minute light exposures for comparison. 

2.5 Scaffold-Tissue interface visualisation 

To observe the cross-links formed due to light activation, SEM images were taken of the interface 

between the scaffold and tissue. In preparation for SEM, samples were immediately fixed after light-

activated adhesion in 2.5% glutaraldehyde for 1 hour, then 1% OsO4 post-fixation for 1 hour. The 

samples were then dehydrated in a graded series of ethanol concentrations, HMDS 

(hexamethyldisilazane) dried, mounted on carbon and then sputter coated with gold. SEM was 

performed on a Zeiss Ultra at 5 keV. 

2.6 Cell culture and proliferation 

The ability of the scaffolds to support cell adhesion and growth was evaluated. Mouse skin fibroblast 

(3T3-L1) cells, were cultured in Dulbecco's Modified Eagle Medium (DMEM) supplemented with 

1% penicillin, 1% streptomycin. Prior to seeding, the scaffolds were sterilised by immersion in 70% 

ethanol for 6 hours, followed by rinsing in Phosphate Buffered Saline (PBS) three times, and then pre-

incubated in DMEM for 24 hours to improve cell attachment (Chatterjee et al., 2012). Scaffold 

samples were placed in 24-well culture plates and seeded with 1.5 x 10
5
 cells/scaffold using the static 

surface seeding method (Thevenot et al., 2008). After seeding they were placed in incubation for 3 

hours to allow for initial cell attachment and then immersed in supplemented DMEM for further cell 

growth (Thevenot et al., 2008). Culture medium was replaced every second day. 
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To assess cell attachment and survivability, SEM and Live/Dead Assay were performed. SEM was 

performed to observe cell morphology and attachment. The scaffolds were removed at 1, 3, and 7 

days’ culture, fixed in 2.5% glutaraldehyde for 24 hours at 4°C, dehydrated in a graded series of 

ethanol concentrations, dried with HMDS, and then sputter coated with gold. The electron microscope 

was operated at 5 keV to image the samples. Live/Dead Assay was performed by removing scaffold 

samples at each time interval, rinsing in PBS and then incubated in fluorescing solution (1ml PBS, 

1µL calcein-AM and 1µL of Propidium Iodide) (Sigma-Aldrich) for 15 minutes. After incubation the 

scaffolds were placed under Olympus BX51 Fluorescence microscope (Olympus, Japan) and cells 

observed. Live cells appeared green, while dead cells appeared red. Live Cell images and Dead Cell 

images were overlayed on top of each other using ImageJ. 

2.7 Statistical methods 

Data are expressed as mean ± standard deviation.  The two-sample t-test was used to interrogate the 

data for significance in differences.  

3 Results & Discussion 

3.1 Scaffold physical properties 

The RBC-scaffold production process described above produced consistently sized and coated 

scaffolds which were bright pink in colour (Figure 3a). Table 1 summarises the various pore 

properties characterised. After coating, the mass of the scaffolds significantly increased (p < 0.01), 

this was expected as the coating adds to the mass. The volume did not change significantly (p > 0.1) 

which is a good sign that the dimensions of the scaffold do not change after the coating process. There 

was a significant decrease in porosity (p < 0.01) after the scaffolds are coated in RBC solution. 

Examination under SEM (Figure 2) revealed that the RBC solution had created films between some of 

the pores in the scaffold, potentially accounting for the decreased porosity. Film forming on one side 

of the RBCscaffolds is desirable, as it allows consistent contact with the tissue, thus improving 

adhesion. The SEM images also revealed many pores remain not blocked in the RBC-scaffold, so 

there is still a degree of interconnectivity. The other side of the scaffold has no film covering, so still 

allows for tissue integration and attachment to occur on that side. The average pore size and range 

were significantly smaller in the Variotis control, compared to the RBC-scaffold (p < 0.01). The SEM 

images revealed that the smaller pores in the RBC-scaffold are often covered over by the RBC film, 

and therefore explain why there is a shift to the larger pore sizes. The shift in pore size could affect 

the scaffolds cell attachment as certain cells prefer smaller pores, and larger pores decreases the 

surface area for the cells to attach to (Murphy and O'Brien, 2010). There is a limitation in using the 

SEM images for pore size analysis, since they only reveal surface pores and are only 2D 

measurements but they still provide a good indication of the general porosity of the scaffolds. 

Table 1 - Scaffold Pore dimensions determined by SEM and density measurements 

Scaffold Type Mass (mg) Volume (cm
3
) Porosity (%) Pore Size Range (µm) 

[mean size] 

Sliced Variotis 36 ± 4.90 0.562 ± 0.14 94.2 ± 0.94 120.7 - 684 [345] 

RBC-scaffold 96 ± 1.20 0.649 ± 0.14 86.5 ± 2.95 213 - 967 [444] 
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Table 2 – Results of the Capillarity test determining the saturation (time in) and leaching (time out) times for Variotis 
and RBC-scaffolds 

Scaffold Type Time In (s) Time Out (s) Notes 

Sliced Variotis 2.29 ± 0.809 10.59 ± 4.12 No noticeable trapped solution. 

RBC-scaffold 0.545 ± 0.185 13.42 ± 3.90 Darkly stained blue, no trapped solution 

 

Table 2 summarises the observations made during the capillarity test. Comparing the sliced Variotis to 

the RBC-scaffold, the time it takes for the blue solution to saturate the RBC-scaffold is significantly 

shorter (p < 0.05), but the time for the solution to leach out shows no significant difference (p > 0.1). 

This means the interconnectivity of the two scaffold types are comparable and sufficient for waste 

transport. Interestingly the RBC-scaffolds were significantly stained blue after the test (Figure 3c), 

whereas the controls did not stain significantly (Figure 3b). The quicker uptake of solution and 

staining could be attributed to the hydrophilic chitosan in the RBC coating absorbing the solution 

(García Cruz et al., 2008). 

Effective interconnectivity is necessary for the transport of nutrients and waste in tissue engineering. 

The drop in porosity to ~85% for the RBC-scaffold is not a major concern as it has been shown that 

porosity >70% is sufficient to allow nutrient transport and tissue ingrowth (Yang et al., 2001). 

MicroCT analysis further reinforced the results found from the physical measurements and SEM. The 

porosity in the control scaffold is high with great interconnectivity throughout the scaffold. The RBC-

scaffold, showed signs of coated struts with some pores being blocked by film (Figure 4), it also 

revealed that the RBC-scaffold still had 100% interconnectivity. 

3.2 Scaffold mechanical properties 

The mechanical properties of the scaffolds are summarised in Table 3. The RBC-scaffold was found 

to be significantly stiffer than any of the other samples (p < 0.01), even greater than the literature 

values for human oesophagus (Vanags et al., 2003). Yield strength was also significantly increased 

from the control (p < 0.05), but did not reach the strength of the porcine stomach tissue tested. The 

increase in stiffness and strength can be attributed to the RBC-coating, forming film and joining struts 

together within the scaffold. 

Scaffold design often requires a compromise between mechanical properties and porosity. A scaffold 

which is too porous will often not have enough mechanical strength; while a scaffold which has high 

modulus will often have little porosity to support tissue growth. The RBC-scaffold has a compromise 

of lower porosity but stronger mechanical properties, which match the properties of gastrointestinal 

tissue closely giving it a better chance for tissue integration.   

Figure 5, shows sample stress-strain curves of both the sliced Variotis and RBC-scaffolds. The 

general shapes of the stress-strain curve for the two scaffold types are quite different. The Variotis 

scaffolds quickly decline in strength after yielding, while the RBC-scaffolds plateau after yielding, 

then decline. This plateau region represents the coated struts of the RBC-scaffold delaying sudden 

fracture. By contrast, the Variotis control has no coating, resulting in each strut of the scaffold 

fracturing quickly. This gives the RBC-scaffolds more tolerance to immediate failure, as the coating 

helps maintain the strength of the scaffold. This makes the RBC-scaffold more suitable for device 

attachment. Compared to the conventional film design by Lauto et al., the scaffold structure has lower 
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stiffness (3.55 ± 1.28 vs. 16.0 ± 4.7 kPa (Barton et al., 2014)). The flexibility is attributed to the struts 

of the scaffold able to deform slightly before failure. This lower stiffness makes it more compatible 

for tissue integration. 

Table 3 - Mechanical properties of the scaffolds found after tensile test, compared against literature values. 

Summary Elastic Modulus (MPa) Yield (kPa) 

Sliced Variotis 0.1509 ± 0.058 11.93 ± 6.15 

RBC-scaffold 3.55 ± 1.28 94.58 ± 39.48 

Porcine Stomach 1.073 ± 0.40 226.8 ± 54.20 

Literature. Human oesophagus 

(Vanags et al., 2003) 
2.3 2190 

RBC Film design (Barton et al., 

2014) 
16.0 ± 4.7 8100 ± 1900 

 

3.3 Scaffold adhesion strength 

The exact mechanism for protein–protein cross-linking initiated by light absorption of RB molecules 

has not been fully elucidated. The general theory is that light is absorbed by the RB, which promotes 

it to an excited singlet, then excited triplet state. When sufficient oxygen is present, the RB triplet 

state transfers energy to oxygen, generating singlet oxygen. This singlet oxygen then reacts with 

certain amino acids, mainly histidine (His), to initiate covalent bonds between protein molecules 

(Cherfan et al., 2013; Shen et al., 2000). Since the bonds are made between protein molecules, the 

addition of chitosan in the RBC scaffold is essential. Scaffolds soaked in only RB do not achieve 

adhesion after light activation; this is because the tissue has no corresponding molecules for cross-

linking. 

The spectral power distribution measured by the spectroradiometer is shown in Figure 6. The curve is 

typical of a blue-phosphor LED, with peaks in the blue and green-yellow region. The power meter 

measured 3.43mW/cm
2
 of irradiance at the 532nm wavelength (the peak wavelength absorbed by 

RB). Taking into consideration the exposure times of 2 - 15 min, the fluence range was 0.4 - 3 J/cm
2
. 

This is considerably lower than the energy used by laser activation which is usually ~100 J/cm
2 
(Lauto 

et al., 2010; Xu et al., 2015). Adhesion was successful after light activation with the broad spectrum 

LED. This shows that it is not necessary to use high powered lasers to photoactivate the dye. This is 

beneficial to the methods usability as it minimises thermal damage and avoids eye safety concerns. It 

is also a cheaper and more accessible option compared to lasers. Martinez et al. also showed great 

success in using non-laser activation for photochemical tissue bonding. They found that the bonding 

strength formed via a 50W halogen lamp and corresponding coloured filters was equivalent to the 

strength formed via laser activation (Martínez-Escanamé et al., 2008).  

The results of the lap shear adhesion test indicate that the adhesive bond strength increases as the light 

exposure time increases. The results of the adhesion test are summarised in Table 4. The increase in 

strength between each time interval was found to be not statistically significant (p > 0.1) except for 

the increase from 5 min to 10 min (p < 0.05). The maximum adhesion strength achieved with the 

RBC-scaffold (8.61 ± 2.81 after 15min LED activation) isn’t far off from the adhesion achieved by 

RBC film tested by (Lauto et al., 2010) who achieved adhesion strength of 15.1 ± 1.2 kPa after 6 

minutes of laser activation. 
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Yang, et al. using FEM (Finite Element Modelling), simulated a 5ml bolus being transported through 

an oesophagus under peristalsis and found that the highest axial and circumferential stress are 29.0 

and 36.5 kPa respectively. They also found that the highest shear stress was 238.6 Pa (Yang et al., 

2007). Based on the adhesive shear strength results for the RBC-scaffold, it is expected that the 

scaffolds will withstand these in vivo shear stresses. It should however be noted that in-vivo forces 

will be multi-directional, while this test only applied forces in one direction.  

Knecht et al. compared the strength of various scaffold fixation techniques (press-fit, cartilage 

sutures, fibrin glue and transosseous sutures) and found that transosseous sutures were the strongest, 

withstanding 38.18 ± 9.53 N of tensile force. Fibrin glue was found to withstand 2.18 ± 0.47 N of 

tensile load and chondral sutured scaffolds were 26.29 ± 1.55 N (Knecht et al., 2007). The light-

activated adhesive method is comparably in strength to fibrin glue (converting the fibrin glue force to 

shear stress is ~13kPa), but still cannot beat the current standard of sutures. The RBC-scaffold isn’t 

expected to be placed in areas of high mobility, so it isn’t required to be as strong as sutures. 

The difference between the two concentrations was unexpected. Based on the work by Chan et al., it 

was assumed that a higher concentration of RB would allow for more cross-links to form. This 

however was not the case, with the 10 min 0.1% w/v samples matching up to the 5 min 0.01% w/v 

samples in adhesion strength. This difference could be attributed to the additional concentration of 

RB, oversaturating the scaffold and actually interfering with the interactions that occur between the 

molecules on the tissue and scaffold. This was also noted by Chan et al. when they were discussing 

why higher concentrations of RB did not result in stronger bonds (Chan et al., 2002). The 

oversaturation can be seen by the appearance of the 0.1% RB tissue samples after lap shear testing 

(Figure 7b). 

Table 4 - Adhesive Shear Strength for RBC-scaffold at various light exposure conditions after lap-shear tests 

Scaffold Exposure Time Adhesive Shear Strength (kPa) Notes 

RB 0.01% 2 min 1.50 ± 1.21 2 samples failed during test prep. 

5 min 3.24 ± 3.28 2 samples failed during test prep. 

10 min 7.50 ± 0.99 1 sample failed cohesively  

15 min 8.61 ± 2.81 2 samples failed cohesively 

RB 0.1% 2 min 1.93 ± 2.00 3 samples failed during test prep. 

10 min 3.01 ± 1.23 1 sample failed during test prep. 

 

There were several issues with the adhesion test. Firstly, excessive variability in adhesion strength 

between samples was observed, this is especially evident in the shorter exposed samples. Secondly, 

inadvertent stress placed on the bonds during mounting of the specimens resulted in failure of some of 

the weaker samples prior to commencement of the tests; these results are noted. The strength of the 

bond for these samples was given at least 0.5 kPa. This represents the adhesive strength required to 

support the mass of the test fixture, and since all samples were able to support the fixture, this was 

chosen as the minimum bond strength.  

For some samples of the longer exposure times, the failure of the bond actually occurred cohesively 

(i.e. the scaffold failed, not the adhesive bond). Figure 7a shows the scaffold still attached to the tissue 

but due to the failure of the scaffold it is missing a portion in the centre. This means the bond was 

limited by the strength of the scaffold at those times. This is also noted in the results. 
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3.4 Temperature change due to light actvation 

Figure 8 shows the average temperatures reached for the various times tested. It can be seen that after 

15 mins of exposure the temperature increased by 12.1°C. This increase in temperature is attributed to 

the use of a broad spectrum light source. RB absorbs light in the green region (532nm), that means the 

other wavelengths of light are not absorbed and that energy is converted to heat.  Temperatures above 

40°C can be damaging to tissue, with every 1°C rise doubling the rate of cellular death (Dewhirst et 

al., 2003; Li et al., 1987). This means the light activation system in its current form could cause 

thermal damage after prolonged activation. The temperature increases in vivo however, are expected 

to be different due to the difference in starting temperature (25°C vs 37°C) and the body’s fluid 

cooling against temperature change. For initial in vitro tests and proof of concept the use of the broad 

spectrum LED lamp is acceptable, but for in vivo tests the light activation system will need to be 

modified to avoid thermal damage. This could involve using infrared filters, narrow wavelength 

sources or lower powered light sources. In vivo the scaffolds will need to be activated via endoscope, 

so the effect that has on adhesion will need to be assessed in future tests. Martinez et al. used a broad-

spectrum 50W halogen lamp with coloured filters to activate RB dye. They found that after 10 

minutes of activation at 0.1 W/cm
2
 the surface temperature of the tissue increased from 27°C to 47°C, 

which they considered safe as it was below 60°C, the critical temperature for cell death for short 

periods of heating (Martínez-Escanamé et al., 2008). 

3.5 Scaffold-Tissue interface 

Representative SEM images of the scaffold-tissue interface are presented in Figures 9 & 10. Unless 

stated otherwise the images are orientated so that the top half is the RBC-scaffold, and the bottom half 

is the porcine stomach tissue. The micrographs further reinforce the results of the adhesive strength 

tests (Section 3.3). As exposure time increases, the interface between the tissue and scaffold becomes 

less pronounced, as more bonds are formed and the gap narrows. This can especially be seen when 

comparing the 2 min sample and 10 min samples for 0.01% RB (Figure 9a & Figure 9c). In the 2 min 

sample the bonds can be seen, whereas in the 10 min sample the interface gap is unnoticeable. 

Comparing the two different concentrations of RB, the 2 min samples are comparable, with fewer 

bonds observed between the scaffold and tissue. The 10 min samples however, have stark differences. 

The 0.01% RB samples (Figure 9c) were more closely bonded to the tissue, while the 0.1% RB 

samples (Figure 10b) still have a distinct gap between scaffold and tissue. The 10 min 0.1% RB 

sample is more comparable to the 5 min 0.01% RB sample (Figure 9b), and this reinforces the 

adhesive strength results where the strength of the 0.1% RB samples were similar in strength to the 5 

min 0.01% RB samples. 

3.6 Scaffold cell culture tests 

From the SEM images of cell attachment (Figure 11), it can be seen that both scaffolds support cell 

adhesion, as the morphology of the cells changed from spherical to flat spreading cells over the 7 

days. All images are at 500x magnification. With regards to cell proliferation, the 0.01% w/v RBC 

scaffold appears to have poorer cell proliferation compared to the control when observing the number 

of cells with SEM. 

 

Observing the Live/Dead Assay results (Figure 12), it can be seen that the control has significantly 

more dead cells over the 7 days compared to the RBC-scaffold. This indicates that the RBC coating is 
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more biocompatible and less cytotoxic than the control. This is a favourable sign for cell survival and 

tissue integration. The increase in biocompatibility can be attributed to the chitosan in the RBC 

coating being more hydrophilic, which improves cell spreading and survival (Chang and Wang, 

2011). Previous studies have shown that chitosan treatment enhances cell attachment and 

proliferation, due to its increase in biocompatibility (Jing et al., 2014; Mei et al., 2005). Overall cell 

attachment and proliferation appear to be poorer in the RBC-scaffold, this was also observed in the 

SEM images. This could be due to the larger pore sizes reducing surface area to volume ratio. A low 

surface area/volume ratio has been recognised for poor cell attachment as it minimises the surfaces for 

the cells to attach to (Bertoldi et al., 2011; Kim and Mooney, 1998). A possible way to improve the 

cell attachment is through addition of bioactive components such as bioglass or growth factors. In 

general, the cell interactions with the RBC-scaffold show great signs for the long-term tissue 

integration of the scaffold, allowing for a strong fixation. 

4 Conclusion 

In summary, the synthesis of a light-activated adhesive scaffold has been demonstrated. The 

scaffold’s porosity and mechanical strength are sufficient for tissue integration. After light activation 

the RBC-scaffolds were able to adhere to porcine stomach tissue with adhesive strength sufficient to 

resist forces expected in vivo. LED light exposure was shown to be capable of activating the cross-

linking process, but the heat produced by the lamp will need to be mitigated for in vivo trials. Cell 

culture tests revealed that the RBC coating enhanced biocompatibility. These promising results 

support using the RBC scaffold as a device attachment system, particularly in the gastro-intestinal 

tract. Further investigations using simulated models and in vivo animal studies are required before the 

device can be proven for clinical use. Due to its tissue engineering function, its applications could be 

outreaching, potentially useful as a wound healing patch to treat perforations. 
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8 Figure Legends 

Figure 1 - Diagram of light activation using broad spectrum LED light. Weights were placed to 

maintain intimate contact between the tissue surface and the RBC-scaffold. 

Figure 2 - SEM images of a) Control Variotis b) RBC-scaffold with pore blockage circled. 

Magnification 50x 

Figure 3 – Appearance of a) 0.01% w/v RBC-scaffold before capillarity test b) Control scaffold after 

capillarity test c) RBC-scaffold after capillarity test.  

Figure 4 – Sectioned view of a MicroCT reconstruction of 0.01% w/v RBC-scaffold. Pseudo-colour 

added based on the different thresholds distinguishing between the RBC coating and the base scaffold. 

Blue is scaffold, yellow is RBC coating.  

Figure 5 – Sample Stress-Strain curve for Variotis and RBC-scaffolds after tensile test at a strain rate 

of 10mm/min. 

Figure 6 – Normalised Spectral Power Distribution of the Cool White LED lamp used for light 

activation 

Figure 7 – a) RB 0.01% scaffold exposed to 15 min of light, failed cohesively b) Comparison of the 

stain after adhesion test, left is RB 0.01%, right is RB 0.1%.  

Figure 8 - Tissue Surface Temperatures reached after certain times of LED exposure 

http://dx.doi.org/10.1016/j.cej.2007.07.083
http://dx.doi.org/10.1089/107632701753337645
http://dx.doi.org/10.1155/2013/396056


14 

 

Figure 9 - SEM of 0.01% RBC-scaffold interface after a) 2 min, arrows highlighting the cross-links 

formed b) 5 min, c) 10 min arrows highlighting intimate interface and d) 15 min light exposure. Top 

half is RBC scaffold, bottom is porcine stomach tissue. 

Figure 10 - SEM of 0.1% RBC-scaffold interface after a) 2 min and b) 10 min light exposure. The 

interface between the scaffold (top) and tissue (bottom) is less intimate compared to the 0.01% 

samples 

Figure 11 - SEM images observing cell morphology over 7 days on the surface of a) Variotis scaffolds 

b) RBC-scaffold. Cells seeded were mouse skin fibroblasts (3T3-L1). Magnification 500x 

Figure 12 - Live/Dead Assay of mouse skin fibroblasts (3T3-L1) on a) Variotis scaffolds b) RBC 

scaffolds. Calcein was used for the green fluorescence of live cells, and Propidium Iodide was used 

for the red fluorescence of dead cells. Magnification 40x.  
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8.1 Highlights 

 Light-activated Adhesive Scaffold successfully developed 

 Achieved adhesive strength between soft tissue and scaffold of 8.61 ± 2.81 kPa 

 Scaffold has properties conducive for tissue integration 

 The potential for use in device attachment is high 

 




