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Microorganisms can be used for the production of diverse 
chemicals and materials from renewable resources. 
However, microbial metabolism has unfortunately not 

evolved to suit the practical outcomes desired by humankind; thus, 
when microbes are isolated from nature, their efficiency in produc-
ing any given molecule is rather low. Metabolic engineering1,2 is used 
to convert these reluctant biofactories into highly efficient, focused 
machines capable of generating huge quantities of a molecule of 
interest. The recent development of high-throughput techniques 
for deciphering genomes, transcriptomes, proteomes, metabolomes 
and fluxomes, together with computational tools, have changed the 
landscape of what is possible in the field, with systems metabolic 
engineering emerging as a conceptual framework to encompass the 
spectrum of strategies used in metabolic engineering. Systems met-
abolic engineering can thus be defined as systems-level metabolic 
engineering integrating the ‘omic’ and computational techniques of 
systems biology, the fine design capabilities of synthetic biology and 
the rational and random mutagenesis methods of evolutionary engi-
neering. Using systems metabolic engineering, scientists synthesize 
both information and biological activities to create new metabolic 
products and pathways, cellular regulatory circuits and functions3. 
Through systems metabolic engineering, a variety of microbial cell 
factories are being developed to efficiently manufacture both natu-
ral and non-natural chemicals and materials1,2.

The overall trajectory of any particular metabolic engineer-
ing project varies according to the identity of the target mol-
ecule. Chemicals can be broadly classified into four categories on 
the basis of whether they have thus far been found or reported to 
exist in nature (natural versus non-natural) and whether they can 
be produced by inherent pathways of microorganisms (inher-
ent, noninherent or created; Fig. 1). Natural-inherent chemicals 
are endogenous metabolites in naturally isolated microorganisms 
and thus can be produced inherently through a native pathway. 
Natural-noninherent chemicals are those that are found in nature 
but are best produced in a heterologous host strain using nonin-
herent pathways introduced from other hosts or metagenomes. 
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Growing concerns over limited fossil resources and associated environmental problems are motivating the development of sus-
tainable processes for the production of chemicals, fuels and materials from renewable resources. Metabolic engineering is a 
key enabling technology for transforming microorganisms into efficient cell factories for these compounds. Systems metabolic 
engineering, which incorporates the concepts and techniques of systems biology, synthetic biology and evolutionary engineer-
ing at the systems level, offers a conceptual and technological framework to speed the creation of new metabolic enzymes and 
pathways or the modification of existing pathways for the optimal production of desired products. Here we discuss the general 
strategies of systems metabolic engineering and examples of its application and offer insights as to when and how each of the 
different strategies should be used. Finally, we highlight the limitations and challenges to be overcome for the systems meta-
bolic engineering of microorganisms at more advanced levels.

Non-natural–noninherent chemicals are those that have not yet 
been found in nature but can be produced in a noninherent host 
strain by the establishment of heterologous pathways and enzymes, 
often using genes found from various sources in combination. Non-
natural–created chemicals are those that have not yet been found 
in nature and, owing to the lack of any known metabolic enzymes 
and pathways leading to their formation, can only be produced by 
creating synthetic enzymes and pathways with new functions. These 
definitions are thus somewhat fluid depending on available infor-
mation; for example, chemicals currently classified as non-natural 
might be reclassified as natural if they are discovered in nature; 
similarly, created pathways might be reclassified as inherent or 
noninherent if corresponding biosynthetic enzymes and metabolic 
pathways are discovered.

In their efforts to obtain these different categories of molecules, 
metabolic engineers consider not only the efficiency of a potential 
metabolic pathway but also the most efficient means to construct it. 
For example, natural-inherent chemicals can often be overproduced 
by directly modifying the host strain to optimize the fluxes of native 
pathways at the systems level. As a result, their engineering may rely 
on more intuitive approaches that use traditional metabolic and bio-
process engineering strategies to cope with well-defined and widely 
known problems. However, cells are finely tuned to avoid wasteful 
accumulation of chemicals, and so efforts to produce some mole-
cules may require application of systems biology, synthetic biology 
and evolutionary engineering—a strategy for tuning the expression 
of multiple genes and adapting cellular physiology simultaneously 
and autonomously by mimicking the natural selection process—to 
tackle more difficult problems that result from the complex nature 
of metabolic and cellular regulatory networks. In contrast, the pro-
duction of natural-noninherent, non-natural–noninherent and 
non-natural–created chemicals that are not synthesized via native 
pathways begins with the design of appropriate metabolic pathways, 
constructed via heterologous and/or combinatorial expression of 
known genes or creation of new genes. Once the synthetic pathways 
are successfully established, additional approaches can be taken to 
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further engineer the host strain for the enhanced production of 
desired chemicals.

In this review, we focus our attention on the techniques and strat-
egies that, in combination, constitute systems metabolic engineer-
ing. We use recent examples of engineering successes to exemplify 
these ideas and provide guidance as to when each of the methods 
should be used and what limitations should be considered. Finally, 
we offer a perspective on the challenges facing the field and the 
potential of systems metabolic engineering as an essential enabling 
strategy for the successful establishment of biorefineries.

construction of synthetic metabolic pathways
As discussed above, many target chemicals cannot be synthesized 
via native metabolic pathways; as a result, innovative strategies and 
tools are required to build synthetic pathways leading to the effi-
cient formation of targeted chemicals. Some engineering projects 
use known enzymes to catalyze their canonical metabolic reactions 
but with improved performance in their respective host strains. In 
other cases, the numerous enzymes and pathways in nature are used 
as a diverse trove of genes for reconstructing a synthetic pathway, 
a resource that is made even more powerful by the accumulation 
of genomic and metagenomic sequencing data and advances in 
inexpensive gene-synthesis technology. Computational algorithms 
based on the accumulated genetic, genomic and enzymatic infor-
mation can help design the most efficient metabolic routes using 
enzymes originating from diverse organisms and metagenomes. 
Directed evolution and rational protein design based on protein 
structure information can also contribute to the creation of new 
enzymes with new catalytic functions. Thus, the diversity of chemi-
cals that can be manufactured by metabolic engineering is virtually 
limitless and is indeed increasing rapidly. The principles and tools 
for pathway prediction and design have recently been comprehen-
sively reviewed4. Instead of iterating these, the pathways constructed 
using rational and computational strategies are reviewed here.

De novo pathway design. The first step in reconstructing synthetic 
metabolic pathways for natural-noninherent and non-natural–
noninherent chemicals is the design of optimal pathways leading to 
their formation. Next, the best candidate enzymes originating from 
diverse organisms or metagenomes can be heterologously and/or 
combinatorially introduced to establish a new metabolic pathway. 

Sometimes, filling in the gaps between disconnected metabolic 
reactions in the production host is all that is needed to establish a 
continuous pathway leading to the formation of the desired prod-
uct. Such simple ‘gap filling’ with heterologous enzymes has been 
successfully applied to the development of strains for the produc-
tion of various natural and non-natural chemicals.

A good example of a natural-noninherent chemical produced 
through metabolic engineering is fatty acid ethyl ester (FAEE). 
FAEE, an alternative diesel fuel, was produced from hemicel-
lulosic biomass in an engineered Escherichia coli strain by com-
bining genes from various organisms, including both plants and 
bacteria5. The heterologous enzymes, wax ester synthase from 
Acinetobacter baylyi and thioesterases from plants, as well as pyru-
vate decarboxylase and alcohol dehydrogenase from an ethanol 
producer, were introduced for free fatty acid production and for 
ethanol production, respectively. The combined introduction of 
these two systems yielded an E. coli strain that produced 674 mg l–1  
of FAEE from a renewable resource. Another example is isoprene, 
which was intended for use as a jet fuel as well as a platform chemi-
cal. Isoprene production was obtained by introducing heterologous 
ispS genes encoding isoprene synthase from Populus nigra and 
Pueraria montana into E. coli and Synechocystis sp. PCC6803, respec-
tively6,7. Similarly, various natural alcohols, including isobutanol, 
2-methyl-1-butanol, 3-methyl-1-butanol and 2-phenylethanol,  
could be produced in E. coli by introducing metabolic reactions 
catalyzed by 2-ketoacid decarboxylase from Lactococcus lactis and 
alcohol dehydrogenase from Saccharomyces cerevisiae, which con-
vert 2-ketoacids to alcohols (Fig. 2a)8.

There has recently been a report describing the biological pro-
duction of styrene, a non-natural–noninherent chemical that is 
a monomer of industrially important polymers, by establishing a 
synthetic pathway composed of heterologous genes of eukaryotic 
origin in E. coli (Fig. 2a)9. In this study, a pathway composed of 
phenylalanine:ammonia lyase from Arabidopsis thaliana and cin-
namate decarboxylase from S. cerevisiae was introduced into E. coli, 
generating an engineered strain that was able to sequentially convert 
phenylalanine, endogenously produced from glucose, to styrene, 
yielding a styrene titer of 260 mg l–1.

In silico pathway prediction. What can scientists do when obvious 
gap-filling strategies are not available? Several pathway prediction 

Figure 1 | categories of chemicals produced by microbial cell factories. Inherent metabolites and pathways are indicated in black, and noninherent 
metabolites and pathways are represented by different colors according to the category: natural-inherent, green; natural-noninherent, blue; non-natural–
noninherent, orange; non-natural–created, red. A, carbon source; B, I, O and T, metabolic intermediates; C, byproduct; D, K, P and U, target products.
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tools that inspect all of the possible routes to a target chemical 
have been developed for the accurate prediction of synthetic path-
ways. These tools use network-based pathway analysis, considering 
pathway distance from substrate to product, and take into account 
substrate specificities and binding sites, reaction mechanisms, struc-
tural changes in substrate-product pairs and/or thermodynamic 
favorability10,11. Using these tools, it is possible to design multistep 
synthetic pathways for the biosynthesis of non-natural chemicals. 
Prediction methods can be broadly classified into two types: chemi-
cal structure–based and knowledge-based ones.

Chemical structure–based methods are applicable to reconstruct-
ing multistep metabolic pathways on the basis of changes in chemical 
structures from the substrate to the product10,12–15. Various plausible 
pathways that can be predicted by the chemical structure–based 
method are not restricted by the set of known enzymes, providing 
several possibilities for the production of the target compound. For 
instance, an algorithm based on transformation of functional groups 
by known specific chemistry was used to design E. coli capable of 
producing 1,4-butanediol (1,4-BDO), a non-natural chemical of 
industrial importance for the manufacture of polyesters and span-
dex fibers. It predicted more than 10,000 possible routes of four 
to six steps starting from central metabolites such as acetyl-CoA, 
a-ketoglutarate, glutamate and succinyl-CoA10. Two synthetic path-
ways for 1,4-BDO production were selected by evaluating the maxi-
mum theoretical 1,4-BDO yield, pathway distance, thermodynamic 
feasibility and number of non-native and new steps. The construc-
tion of these synthetic pathways in E. coli led to the first biological 
production of 18 g l–1 of 1,4-BDO from glucose.

In contrast to chemical structure–based methods, knowledge-
based methods predict metabolic pathways on the basis of experi-
mentally identified information about reactions and pathways 
deposited in several different databases16–18. Knowledge-based 
methods use network analysis of elementary flux modes, extreme 
pathways and the shortest pathways to reconstruct the most efficient 
pathway for metabolic engineering of a host organism19. Once a tar-
get product is chosen, all of the plausible pathways are constructed 
considering reaction rules that are often based on the enzyme clas-
sification system. For example, the BNICE framework was used to 
reconstruct a synthetic pathway for the production of 3-hydroxy-
propanoate from pyruvate in E. coli16. Knowledge-based methods 
can also be incorporated into in silico metabolic models to design 
optimal metabolic pathways and identify genetic knockout candi-
dates20. OptStrain was used to design optimal metabolic pathways 
for the production of hydrogen and vanillin by deleting existing 
reactions and inserting a minimal number of non-native reactions21. 
These achievements in in silico pathway prediction have opened a 
new avenue for metabolic engineering distinct from traditional ad 
hoc genetic engineering and hold great promise in the systematic 
reconstruction of synthetic pathways for the efficient production of 
non-natural chemicals.

enzyme engineering and creation for synthetic pathways. What 
if pathway prediction methods do not return a reasonable route to 
the desired molecule? If enzymes involved in the pathway leading to 
a non-natural chemical are not known, one available approach is to 
create new enzymes with desired functions. A common approach is 
for new enzymes to be developed by altering the substrate specifici-
ties of the most plausible enzymes (that is, those that use structurally 
similar substrates to the selected compound or perform chemistry 
similar to the desired reaction) through mutagenesis and directed 
evolution.

For example, an E. coli strain has been engineered to produce 
a non-natural biodegradable polymer, polylactic acid (PLA)22. 
Following the screening of the most plausible enzymes that can con-
vert lactate to PLA, propionate CoA transferase from Clostridium 
propionicum, a candidate for converting lactate to lactyl-CoA, 

and PHA synthase from Pseudomonas sp. MBEL 6-19, a candi-
date for polymerizing lactyl-CoA into the growing chain of PLA, 
were selected as template enzymes for creating a new pathway. 
Introduction of the heavily evolved versions of these two enzymes 
allowed one-step fermentative production of PLA in E. coli (Fig. 2b).  
This example demonstrates that combining metabolic engineering 
with evolutionary protein engineering to create a pathway of pre-
viously uncharacterized function can diversify the range of both 
natural and non-natural chemicals, fuels and materials that can be 
produced.

Although some flexibility of substrate specificity enables natu-
ral enzymes to catalyze limited non-natural reactions, this strategy 
might not be applicable in all cases. To overcome this problem, a 
de novo design strategy, which begins with the identification of 
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Figure 2 | construction of synthetic metabolic pathways in a noninherent 
host strain. (a) Synthetic pathways can be constructed by overexpression 
of heterologous enzymes. Pathways and enzymes for the production of 
the natural-noninherent compound isobutanol8 and the non-natural–
noninherent compound styrene9 are depicted. (b) Non-natural–created 
compounds can be produced through the development of new pathways 
involving evolved (created) enzymes having desired activities. An 
example shown is the generation of metabolic pathway for polylactic acid 
production in E. coli22,81. The modified residues in the evolved enzymes are 
also shown. Colors of the target chemicals follow those in Figure 1. ATH, A. 
thaliana; CPR, C. propionicum; LLA, L. lactis; Ps6-19; Pseudomonas sp.  
MBEL 6-19; SCE, S. cerevisiae. Adh2, alcohol dehydrogenase 2; 
Fdc1; ferulate decarboxylase; Kdc, 2-ketoacid decarboxylase; Pal2, 
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the minimal active site, comprising transition states between sub-
strates and potential catalytic residues, and then moves on to the 
consideration of the remainder of the enzyme as a scaffold, has 
also been developed23. Using this approach, several new enzymes 
catalyzing non-natural reactions, including Kemp elimination, 
retro-aldol reaction and the Diels-Alder reaction, were syntheti-
cally designed24–26. The recently developed Rosetta de novo design 
protocol simplifies the design process and largely overcomes 
difficulties encountered in using computational design tools to  
generate new catalytic functions, making it a powerful means  
for designing microorganisms for the biological production of 
non-natural chemicals27.

systems metabolic engineering strategies
Once a host strain is capable of producing a desired chemical, the 
next step is to enhance production of the target product through 
iterative and combinatorial applications of systems metabolic engi-
neering strategies. These strategies can be grouped into rational-
intuitive and systematic–rational-random approaches. Rational and 
intuitive approaches can be applied to well-defined problems for 
which solutions have already been well established or can be found 
intuitively. In contrast, systematic–rational-random approaches are 
undertaken when the solution is not intuitively obvious. Table 1 
provides details of how these approaches may be put into practice 

and considerations for their use; additional guidelines for prioritiz-
ing strategies can be found in ref. 3.

rational and intuitive approaches in metabolic engineering
Rational and intuitive approaches are not systems-level strategies by 
themselves but are often used in combination to pursue multiple 
objectives at once. As a result, there is an advantage to using them 
with a systems-level perspective to (i) use a different carbon source 
or enhance its use; (ii) modify transporters to efficiently pump out 
the final product, preventing it from accumulating in the intracellu-
lar space; (iii) eliminate or reduce byproduct synthesis and enhance 
the target pathway flux; and (iv) reroute pathways for efficient pre-
cursor conversion to a desired target.

engineering of carbon source utilization. Much effort has 
been exerted to engineer carbon substrate utilization by focusing  
on enhancing its uptake and utilization efficiency (upper part of  
Fig. 3)28,29, and there has been particular focus on bulk chemical 
production. Also, carbon-source utilization routes are often recon-
structed to enhance the production of target products. In cases 
where phosphoenolpyruvate (PEP) is a metabolic intermediate 
for the desired target product, a non-phosphotransferase system 
(PTS) is often more suitable than a PTS because dissipation of 
the precursor, PEP, can be minimized. For example, replacing the 
native PTS for glucose utilization of E. coli with the non-PTS of 
Corynebacterium glutamicum increased l-lysine yield by up to 20% 
(bottom part of Fig. 3)30.

transporter engineering. In most cases, target chemicals gener-
ated in the cytoplasmic space need to be excreted into the extra-
cellular space through corresponding transporters (Fig. 4). This 
excretion serves to minimize the intracellular concentration of 
the target chemical, thus avoiding feedback inhibition and growth 
inhibition, and ultimately maximizing production of the target 
chemical31–34. At the same time, import of excreted target products 
should be prevented31–34. Recently, a new transporter engineering 
approach was implemented to improve tolerance against toxic tar-
get chemicals35. A large number of pump candidates were subjected 
to a competition-based selection assay in which cells with adequate 
efflux pump activity survived in the presence of the target biofuel 
and became enriched. A limonene-producing E. coli strain contain-
ing a new efflux pump identified by this strategy yielded twice the 
amount of limonene produced by the parent strain35.

byproduct elimination and precursor enrichment. One of the 
most commonly used approaches in metabolic engineering is the 
removal of competing pathways by gene deletion and enhancement 
of the targeted pathway by gene amplification to improve yield, titer 
and specific or overall productivity of a target product by minimiz-
ing byproduct formation and maximizing precursor concentrations. 
There are numerous successful examples of this simple approach, 
which are not further detailed here. Recently, monomers for nylons, 
putrescine and cadaverine were produced biologically using this 
conventional metabolic engineering approach. By intuitively elimi-
nating byproducts and increasing precursor fluxes at the systems 
level, the engineered E. coli strains produced 24.2 g l–1 of putrescine 
and 9.61 g l–1 of cadaverine (Fig. 4)33,34.

rerouting metabolic pathways. What if the originally designed 
metabolic pathway leading to the formation of a desired product 
is not optimal because of the lower-than-expected pathway flux? 
The complexity of metabolic networks provides alternative routes 
that are often more efficient than the well-known pathways for 
the biosynthesis of the target product. For example, n-butanol can 
be more efficiently produced in E. coli by using the Treponema  
denticola trans-2-enoyl CoA reductase instead of the well-known 

P

O
OH

HO

OH
HO

HO

O

OH

HO

HO
HO

HO

O

HO

OH

OH

HO

Insoluble
polysaccharide

Cellulosome

Oxaloacetate

l-Lysine

PEP

PYR

Acetyl-CoA

PP pathway

ADP

PEP

PYR

TCA
cycle

Glycolysis

Carbon
source

Carbon
source

ATP

ED pathway

Monosaccharides

Catalytic
domain

Sca�oldin

Cohesin

Dockerin

Free
hydrolases

Anchoring
protein

Non-
PTS

PTS

Figure 3 | Strategies for substrate utilization engineering. Complex 
polysaccharides that cannot be otherwise used by the wild-type strain can 
be depolymerized by the expression of heterologous enzymes, either in 
the form of an enzyme complex such as cellulosome, which is composed 
of catalytic domains, scaffoldin and dockerin for cellulose degradation, 
or in the form of noncomplex hydrolases. Monosaccharides released by 
depolymerization can be transported into the host cells via endogenous 
or heterologous transporters. Some carbon sources can be imported by 
either PTS or non-PTS permeases. Because PEP is used as a phosphate 
donor for PTS-mediated transport reactions, the use of non-PTS permeases 
can be advantageous for the production of some target products such as 
l-lysine30, which requires an increased PEP pool (green arrows). ED, Entner-
Doudoroff; PP, pentose phosphate; PYR, pyruvate; TCA, tricarboxylic acid.
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table 1 | Metabolic engineering strategies for the production of natural and non-natural chemicals.

Strategy How to use Possible limitations ref.
Substrate 
utilization 
engineering

Introduction of an alternative transport system (for example, 
non-PTS permease instead of PTS)

Systems-level optimization of cellular demands for ATP, PEP 
and pyruvate needed

30

Introduction of heterologous transporters or associated 
enzymes into a host that cannot use a desired inexpensive 
carbon source

Heterologous expression can be difficult; membrane 
transporters also difficult to functionally overexpress and 
manipulate

83

Co-culture of several host strains that can utilize different or, 
in combination, complex carbon sources

Balancing the growth of multiple strains is not easy 28

Modification of regulatory mechanisms such as removing 
catabolite repression to simultaneously utilize multiple 
carbon sources

The rates of using multiple carbon sources might be different 
and thus need to be optimized

84

Transporter 
engineering

Overexpression of product exporters, often combined with 
removal of product importers

Potential for unexpected phenotypes due to membrane 
crowding or unwanted interactions with endogenous 
membrane proteins

31–34

High-throughput transporter screening Considerable effort with no guarantee of finding efficient 
transporter

35

Byproduct 
elimination 
and precursor 
enrichment

Elimination of the competing and/or degrading pathways by 
gene knockout

Can increase cellular stresses or lead to severe growth 
retardation in some cases

31–34

Attenuation of competing pathways by replacing promoter or 
start codon; preferable to gene knockout when the competing 
pathway is needed for cell growth or production of target

Attenuation might not be significant enough to increase the 
flux toward product

85

Overexpression of enzymes to increase the precursor 
availability

Excess enzymes can deplete cellular resources required for 
cell growth; imbalanced expression can lead to accumulation 
of toxic intermediates

31–34

Rerouting 
metabolic 
pathways

Search for more efficient enzymes, often via combinatorial 
heterologous expression of enzymes from various sources

Heterologous enzymes can lack regulatory mechanisms, 
require different cofactors or show different activities in the 
strain to be engineered

36,37

Construction of new biosynthetic pathways to use different 
substrates

Efficiency of newly constructed biosynthetic pathway needs 
to be increased

86

Cofactor 
optimization

Deletion or attenuation of glycolytic enzymes redirects 
metabolic flux through the pentose phosphate pathway to 
increase NADPH pool

Redirection of central metabolism might cause unwanted 
phenotypes such as growth retardation

38–40

Replacement of NADH-dependent central metabolic 
enzymes with NADPH-dependent ones

NADPH-dependent enzymes for the desired reaction might 
not exist in nature

41

Interconversion of NADH and NADPH by the introduction of 
transhydrogenase

Transhydrogenases such as PntAB in E. coli require energy 
for their reactions; transhydrogenases may affect proton-
dependent transport reactions

42

Enzyme evolution to alter the cofactor specificity Considerable effort with no guarantee of finding appropriate 
enzymes

42–44

Simulation and 
omics-based 
identification of 
targets

Identification of additional gene knockout targets by in 
silico metabolic simulation (for example, elementary mode 
analysis, MOMA, OptKnock, OptForce and GDLS)

Genome-scale metabolic models are unable to capture the 
dynamic features of cellular metabolism (i.e., regulatory 
mechanisms and in vivo kinetic parameters); computational 
burden

20,31,32,49, 
63–66,68,69

Identification of additional gene amplification targets by in 
silico metabolic simulation (for example, OptForce, FSEOF 
and EMILiO)

Algorithms do not yet account for nonlinear relationships 
among levels of mRNA, protein, activity and flux

65–68

In silico flux response analysis to examine the effects of 
particular fluxes on cell growth or production of a target

Imperfect nature of genome-scale metabolic network might 
result in unrealistic solution

31

Revealing rate-limiting steps through metabolite profiling Techniques to profile metabolome still need improvement 49
Unraveling unknown mechanisms by analyzing omics data 
that can be manipulated to enhance target production

Algorithms to analyze multi-omics data in an integrated 
manner need to be developed

32,87

Optimization 
of metabolic 
pathways

Determination of intermediate metabolite levels by 
metabolite profiling

Techniques to profile metabolome still need improvement 71

Engineering of promoter strength and gene or plasmid copy 
number

Optimal promoter strength and plasmid copy number must 
be found via trial and error due to nonlinear relationships 
among the levels of mRNA, protein, activity and flux

72

Optimization of untranslated regions to achieve fine tuning of 
protein expression

Imperfect predictions of RNA structures limit rational design 50,51,88

Use of synthetic scaffolds to mimic substrate channeling Substrate trafficking may not be a rate-limiting step 76,77
(continued)
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Clostridium acetobutylicum butyryl-CoA dehydrogenase (Bcd)36 
(Fig. 5a). Another notable example is the production of various 
fatty acids and alcohols using engineered E. coli strains37. Gonzalez 
and his colleagues manipulated several transcriptional regulators in 
E. coli to turn on the b-oxidation pathway in the presence of glucose 
(Fig. 5b)37. Then, fatty alcohols and acids with various chain lengths 
were produced by introducing the appropriate initiation enzyme to 
catalyze the Claisen condensation of acyl-CoA and the termination 
enzyme required for the removal of the CoA moiety from acyl-CoA. 
Through this new reverse b-oxidation pathway, 14 g l–1 of n-butanol, 
a second-generation biofuel, could be produced with a yield of  
0.33 g per gram of glucose, a result comparable to that achieved 
using a traditional n-butanol producer, C. acetobutylicum.

cofactor optimization. Cofactors are often required for biochemi-
cal transformations mediated by metabolic enzymes. It is important 
to consider the availability of necessary cofactors as well as the bal-
ance of electron-mediating organic cofactors, such as NADH and 
NADPH, for the production of many chemicals. These aspects can 

be controlled by engineering global metabolic characteristics toward 
the generation of a cofactor that is highly required for the produc-
tion of the desired chemicals or, alternatively, by changing cofactor 
preferences of relevant key enzymes. The former approach includes 
redirection of metabolic flux through the pentose phosphate path-
way32,38–40, replacement of central metabolic enzymes that prefer 
other cofactors41 and cross-conversion of NADH and NADPH. The 
latter approach is often implemented when the alteration of global 
metabolic characteristics is not easily applicable. In most cases, this 
approach involves screening of various heterologous enzymes42 or 
application of enzyme evolution through site-directed or random 
mutagenesis of a target enzyme43,44 to change cofactor specificity.

systematic and rational-random approaches
The rational-intuitive metabolic engineering approaches described 
above are not sufficient to truly optimize the overall performance 
of the cell owing to the extreme complexity of cellular networks. 
Thus, system-wide analyses, such as in silico– and omics-based tech-
niques (Fig. 6a,b), have been developed for and applied to various 

table 1 | Metabolic engineering strategies for the production of natural and non-natural chemicals (continued).
Enzyme 
evolution 
for activity 
optimization

Random mutagenesis when not much information is available Easy and inexpensive selection method is needed 22,81
Site-directed mutagenesis and saturation mutagenesis when 
information on the structure-function relationship of the 
enzyme is available

Much effort and time needed to test all of the possible 
combinatorial mutations

54,89

Codon optimization for efficient expression in heterologous 
hosts

Codon optimization does not necessarily improve 
expression

54

Metabolic 
evolution

Serial transfer or continuous fermentation of a rationally 
engineered strain to achieve desired phenotypes

Mainly useful for growth-associated production of a target 
product

53,78,79,90

Adaptive 
evolution, 
resequencing 
and 
reengineering

Develop a stress-tolerant strain by adaptive evolution. 
Compare genome, transcriptome and/or proteome analyses 
between mutant and parental strains to identify mutations. 
Reintroduce identified mutations to the parental strain to 
achieve desired phenotypes

Experiments require relatively long time; identification of 
true beneficial mutations after resequencing can be difficult

48,91,92

Multiplexed 
genome 
engineering

Introduction of a single-stranded oligonucleotide library 
into the mutant for high-throughput targeted mutations 
either iteratively (MAGE) or combined with high-throughput 
identification system (TRMR)

Genome sequence should be known; mainly useful for 
the organisms in which single-strand recombination 
mechanisms are well known

55,80

Figure 4 | byproduct elimination, precursor 
enrichment and transporter engineering. 
These strategies can be applied for the 
enhanced production of l-threonine31 (top left), 
l-valine32 (top right), cadaverine34 (bottom left) 
and putrescine33 (bottom right). Strains are 
developed by deleting the competing pathways, 
target (or precursor) degradation pathways 
and product importers while amplifying 
the production pathway fluxes and product 
exporters. The red crosses indicate knocking out 
the corresponding reactions or importers, and 
red wavy lines indicate the reduced formation 
of metabolites by knocking out the major gene 
and leaving the minor one. The green arrows 
indicate increased fluxes by overexpression of 
the corresponding genes. CadB, a cadaverine-
lysine antiporter; PotE, a putrescine-ornithine 
antiporter; PuuP, a putrescine importer; RhtA, 
RhtB and RhtC, l-threonine exporters; TdcC, 
an l-threonine importer; YgaZH, an l-valine 
exporter.
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studies of metabolic engineering31,32,45–49. Synthetic regulation and 
computation-based optimization of metabolic pathways similarly 
represent valuable options for finely tuning metabolic fluxes at 
desired levels50–52. These strategies are complemented by approaches 
that not only rely on some element of randomness but also are 
driven by a clear rationale and can thus be termed ‘rational-random’ 
approaches, which mimic the success of natural evolution acting 
over long periods of time and include metabolic evolution, adaptive 
evolution followed by resequencing and re-engineering, massive 
applications of engineered global regulators and their interacting 
sequences, multiplexed genome engineering and activity optimi-
zation. Here, metabolic evolution refers to an iterative process in 
which cellular metabolism adaptively evolves after the expression of 
genes is purposefully altered for the production of a target chemical, 
whereas adaptive evolution refers to the adjustment of an organism 
to its environment or the process by which it enhances such fitness. 
All of these approaches have been developed to efficiently overcome 
hidden bottlenecks for strain improvement53–55.

In silico– and omics-based target gene selection. In silico 
genome-scale metabolic models and associated simulation strate-
gies have been developed to analyze a cell in the context of global 
metabolic activities and thereby identify gene manipulation targets 
(Fig. 6a)46,56,57. These strategies are particularly valuable for gain-
ing insight into unexpected problems, such as slow growth and low 
product yield, that arise after rational engineering through systems-
level interrogation of cellular networks. One of the most popular 
in silico genome-scale metabolic simulation methods is constraints-
based flux analysis. It allows determination of fluxes by optimiza-
tion of an objective function (for example, maximum cell growth 
rate or maximum product formation rate) using the mass balance 
equations set around intracellular metabolites using the stoichiom-
etry of metabolic reactions under pseudo–steady state assumption.

The simulation results are becoming more accurate as new algo-
rithms are developed. They include steady state regulatory flux 

balance analysis, which combines the model with the transcriptional 
regulation network58; thermodynamics-based metabolic flux analy-
sis (TMFA), which considers the thermodynamics of reactions59; 
flux balance analysis with grouping reaction constraints (FBAwGR), 
based on genomic properties and flux-converging patterns60; proba-
bilistic regulation of metabolism (PROM), which incorporates 
transcriptional regulation using a probabilistic approach61; and flux 
balance analysis with membrane economics (FBAME), which exam-
ines the membrane composition of bacterial cells62. Algorithms for 
identifying gene manipulation targets have also been developed. 
The multiobjective memetic algorithm (MOMA) identifies gene 
knockout targets by the minimization of metabolic adjustment63, 
whereas the bilevel optimization method OptKnock20 couples cell 
growth rate with product formation rate to identify gene knockout 
targets. OptKnock successfully predicted gene knockout targets for 
enhanced 1,4-BDO production, as described above (Fig. 6c). Several 
other algorithms that have been developed are the generalized 
damped least-squares (GDLS) algorithm64, which reduces the com-
putational burden of calculation; OptForce65, which identifies gene 
manipulation targets by comparing the changes of flux variabilities; 
OptORF66, which integrates transcriptional regulatory networks; 
flux scanning based on enforced objective flux (FSEOF)67, which 
allows identification of gene amplification targets; and enhancing 
metabolism with iterative linear optimization (EMILiO)68, which 
includes reactions with individually optimized fluxes.

There have been several successful examples of strain develop-
ment using these algorithms. MOMA identified gene knockout 
targets for the production of cubebol, a natural sesquiterpene alco-
hol; the engineering of identified targets successfully enhanced 
cubebol production to 30.1 mg l–1 in S. cerevisiae69. Production of  
l-threonine31 and l-valine32 could be considerably enhanced by 
manipulating genes identified by such simulations. FSEOF was suc-
cessfully used to enhance lycopene production in E. coli to 283 mg 
l–1 (ref. 67). Similarly, metabolic engineering strategies for the pro-
duction of adipic acid, hexamethylenediamine and 6-aminocaproic 
acid were suggested by in silico gene knockout perturbation studies 
using the genome-scale E. coli metabolic model70. In silico–based 
methods can also integrate omics approaches for strain improve-
ment, as demonstrated for lysine production in C. glutamicum 
using 13C metabolic flux analysis to systematically identify bottle-
neck reactions for lysine production (Fig. 6b)49. These achievements 
demonstrate that the simulation of an in silico genome-scale meta-
bolic model is an impressively effective strategy for engineering the 
metabolism at the systems level to overcome hidden problems in the 
production of targeted chemicals.

optimization and modulation of metabolic pathways. Natural 
metabolic pathways are tightly regulated so as to produce required 
metabolites in just right amounts for cell growth. However, synthetic 
metabolic pathways, which are commonly constructed with heter-
ologous enzymes, are not under such regulatory control; therefore, 
introduction of such pathways into the cell often leads to growth 
retardation and causes metabolic imbalance due to accumulation of 
intermediates, which are often toxic. For example, DNA microar-
ray and metabolite profiling studies have revealed that a synthetic 
mevalonate-based isopentenyl pyrophosphate biosynthetic pathway 
leads to an imbalance in carbon flux and accumulation of the toxic 
intermediate 3-hydroxy-3-methylglutaryl-CoA71.

Controlling the expression of enzymes in a synthetic pathway is 
one of the strategies commonly used to achieve balanced fluxes. Such 
an approach has been used to produce taxadien-5a-ol (a precursor 
of paclitaxel)72. In this case, flux through the metabolite was opti-
mized to avoid the production of an inhibitory indole compound 
by partitioning the pathway into two modules: one comprising 
the methylerythritol-phosphate pathway and one comprising the  
terpenoid-forming pathway (Fig. 7a). Genes for enzymes belonging 

Figure 5 | rerouting of metabolic pathways. (a,b) The rerouting of 
metabolic pathways for the production of n-butanol36 (a) and higher 
alcohols and fatty acids37 (b). As shown in a, n-butanol production could be 
increased by the introduction of trans-2-enoyl CoA reductase (Ter) instead 
of Bcd-EtfAB, which shows low activity in E. coli. Blue arrows indicate 
overexpression of the corresponding genes. Bcd-EtfAB, butyryl-CoA 
dehydrogenase combined with electron transfer flavoprotein. As shown in 
b, various fatty acids and alcohols can be formed depending on the initiation 
enzyme (for example, thiolase) and the termination enzyme (either 
thioesterase or alcohol dehydrogenase) in the reverse b-oxidation pathway, 
which become functional by the removal of catabolite repression. Chemicals 
produced by this pathway are shown. Blue arrows indicate rerouting of the 
pathway and increases in flux by the deletion of negative transcriptional 
regulators, and red arrows indicate overexpression of the corresponding 
genes. Both pathways shown in a and b were more efficient compared with 
the heterologous clostridial pathway in E. coli82.  
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to each pathway were reconstructed as an operon and subjected to 
a multivariate search for optimal operon expression. Various pro-
moters and gene copy numbers were combined, yielding 32 differ-
ent combinations encompassing a wide range of module expression 
levels. The pathway permutations created a nonlinear taxadiene-
production landscape with a global maximum of 1.02 g l–1 in fed-
batch fermentation.

Gene expression can be finely controlled through computational 
optimization of untranslated regions50,51,73 and synthetic regulators 
or genetic circuits. Also, translation efficiency can be estimated on 
the basis of mRNA sequences and their secondary structures, which 
can be used for consequent translational engineering. A dynamic 
sensor-regulator system was applied to the production of FAEE, 
which increased the titer by three-fold compared with that obtained 
with the previously engineered strain5,74. RNA can act as a regulatory 
device as well; the model-driven design of RNA devices including 
ribozymes and aptazymes has recently been reported, and expres-
sion of a target gene was finely controlled by the combination of 

these devices75. These approaches ensure that gene expression is con-
trolled as desired and foster the design of optimal gene expression 
systems.

Enzymes belonging to the same pathway often exist in close 
proximity, enabling each enzyme to efficiently transfer its product 
to the next enzyme as a substrate. This rapid transfer of metabolic 
products to other enzymes enhances the efficiency of a pathway by 
reducing metabolite loss through outward diffusion and hence is 
called substrate tunneling. Recently, a scaffold-based approach that 
mimics the substrate tunneling effect was developed to enhance the 
flux through a synthetic pathway (Fig. 7b)76. In this system, heter-
ologous enzymes involved in a synthetic mevalonate pathway were 
fused to a protein motif that binds a partner protein in a scaffold-
ing protein, thus physically placing enzymes in close proximity 
to each other. The optimized synthetic protein scaffold increased 
mevalonate production up to 77-fold. In another proof-of-concept 
experiment, synthetic scaffolds applied to the production of glu-
caric acid increased the yield of glucaric acid up to three-fold77. This 
enzyme scaffold strategy thus provides a platform for the modular 
control of metabolic flux.

enzyme evolution for activity optimization. In addition to the 
need to find an enzyme capable of performing a desired reaction, 
other factors such as enzyme activity and enzyme concentration can 
limit the biosynthesis of target chemicals. Accordingly, optimization 
of enzyme activity (for example, Km and kcat values) is an important 
option for increasing the synthesis of a target chemical. A number 
of approaches have been implemented to overcome and reprogram 
rate-limiting or rate-controlling enzymes. Recent examples include 
the engineering of geranylgeranyl diphosphate synthase by codon 
optimization to achieve higher expression and the enzyme evolu-
tion of and replacement of amino acids at the active site of levopi-
maradiene synthase to improve catalytic activity54. Introduction of 
these enzymes into E. coli allowed increased production of levopi-
maradiene, a precursor of pharmaceutically important ginkgolides, 
by almost 2,600-fold54.

Metabolic evolution. In cases where a suitable strategy for enhanc-
ing the production of a target chemical is absent or where simultane-
ous and multiplexed engineering are required, metabolic evolution 
can be used. By using natural selection principles, this strategy can 
provide insight into mechanisms of cellular adaptation and simul-
taneously obtain desirable phenotypes that are too complex to 
improve using rational approaches (Fig. 7c). A recent representa-
tive example of metabolic evolution is succinic acid production in 
E. coli53,78,79. By adopting the metabolic evolution strategy, an E. coli 
strain that produced 86.5 g l–1 of succinic acid could be developed 
from a parent strain that produced 5.8 g l–1. It was later found that 
PEP carboxykinase had evolved to become the major carboxylating 
enzyme in the succinic acid–overproducing E. coli, and galactose 
permease and glucokinase were induced because of the inactivation 
of the glucose-specific PEP-dependent PTS. These evolved charac-
teristics, similar to those of native succinic acid–producing rumen 
bacteria, suggested a new metabolic engineering approach for the 
production of succinic acid in E. coli that had not been known 
before applying the metabolic evolution strategy.

adaptive evolution, resequencing and re-engineering. In some 
cases, a desired phenotype (such as tolerance to organic solvent) 
can be obtained through mimicking the natural adaptation pro-
cess by exposing cells to rationally designed external conditions. 
The genome sequences of strains that have adaptively evolved in 
response to genetic or environmental perturbations can then be 
resequenced to identify genes responsible for the improved pheno-
types. The genes identified through this reverse-engineering pro-
cess can then be introduced into an engineered host strain to endow 

Figure 6 | In silico- and omics-based target gene selection and strain 
development based on pathway prediction and in silico simulation.  
(a,b) Identification of knockout and/or amplification target genes by in silico 
metabolic simulation (a) and multiple omics analyses (b) is depicted. As 
shown in a, many different simulations can be performed using the genome-
scale metabolic model. Shown here as examples are identification of gene 
knockout targets by algorithms such as OptKnock (top) and determination 
of the optimal flux of a particular reaction that results in the highest product 
formation rate by flux response analysis (bottom). As shown in b, multi-
omics analyses including genome, transcriptome, proteome, metabolome 
and fluxome can be performed to identify gene manipulation targets by 
comparative analyses. Marked in red are target genes that show significant 
changes under different conditions. WT, wild type. (c) A representative 
example of the development of an E. coli strain for the production of 1,4-
BDO by systems metabolic engineering and, in particular, by using pathway 
prediction and in silico genome-scale simulation for the identification of 
gene manipulation targets10. Orange arrows indicate increasing fluxes 
by the overexpression of corresponding genes. Red crosses indicate the 
knocking out of the corresponding reactions identified by OptKnock 
simulation. CAC, C. acetobutylicum; CBE, Clostridium beijerinckii; ECO, E. coli; 
MBO, Mycobacterium bovis; PGI, Porphyromonas gingivalis. Adh, alcohol 
dehydrogenase; AdhE2, bifunctional alcohol–aldehyde dehydrogenase; Ald, 
aldehyde dehydrogenase; Cat2, 4-hydroxybutyryl-CoA transferase; 4HBd, 
4-hydroxybutyrate dehydrogenase; Kgd, a-ketoglutarate decarboxylase; 
SucCD, succinyl-CoA synthetase; SucD, CoA-dependent succinate 
semialdehyde dehydrogenase.
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the host cell with the desired characteristics (Fig. 7d). For example, 
isobutanol tolerance was improved in E. coli through adaptive evo-
lution48. Genome resequencing of the isobutanol-tolerant mutant 
revealed one missense mutation; mutations by insertion sequence 
elements in 25 genes, including the acrA, gatY, tnaA and yhbJ genes; 
and one deletion between the hipA and flxA genes, which resulted 
in the loss of 62 genes including the marCRAB cluster. Repairing 
mutations in the acrA, gatY, tnaA, yhbJ genes and in the cluster 
comprising the marC, marR, marA and marB genes in the mutant 
considerably decreased isobutanol tolerance, suggesting that these 
mutations are key to isobutanol tolerance. Knocking out four genes 
and one cluster to mimic five key mutations identified by resequenc-
ing resulted in the increase of isobutanol tolerance. This example 
clearly demonstrates that evolutionary engineering approaches 
combined with systems biology produce unexpected outcomes that 
enhance the production of target products or the development of 
strains with desired phenotype.

Multiplexed genome engineering. Once engineers have collected 
information about possible cellular changes that would improve the 
overall metabolic performance of a cell, they need methods to make 
these changes as efficiently as possible. Multiplexed genome-engineer-
ing approaches that enable the simultaneous introduction of numer-
ous mutations in a target organism on a genome scale have recently 
been developed using natural selection principles. Multiplexed 
automated genome engineering (MAGE), which accelerates the 

engineering and expression-level tuning of multiple, evolutionarily 
targeted genes, was developed (Fig. 7e)55. The effectiveness of this 
multiplexed engineering strategy was demonstrated by enhancing 
lycopene production by simultaneously engineering the expression 
of 24 target genes. The result of this genome-engineering procedure 
was the acquisition of a mutant strain within 3 days that showed a 
five-fold increase in lycopene production. A more recently developed 
strategy is trackable multiplex recombineering (TRMR), in which 
thousands of genes in a microbial genome are engineered and moni-
tored simultaneously80. Using the TRMR strategy, genes affecting  
E. coli growth in the presence of various nutrients and inhibitors were 
identified within 1 week.

conclusion
As these burgeoning techniques and strategies show, systems meta-
bolic engineering is becoming an essential platform technology for 
the production of chemicals, fuels and materials. Integration of sys-
tems biology, synthetic biology and evolutionary engineering with 
traditional metabolic engineering approaches is indeed essential for 
developing optimized microbial cell factories.

What are the remaining challenges? As systems metabolic engi-
neering is based on a system-wide understanding of whole-cell 
characteristics, a better understanding of a cell at all levels, includ-
ing the metabolic, gene regulatory and signaling network levels and 
their interactions, needs to be pursued. The genome-scale metabolic 
models developed so far are by no means complete and thus do not 

Figure 7 | Strategies for optimization and modulation of metabolic pathways and rational-random metabolic engineering. (a,b) To optimize the 
concentrations of metabolic intermediates that are harmful or toxic to the cells, various engineering strategies including optimization and modulation of 
metabolic pathways (a) and construction of synthetic protein scaffolds (b) have been successfully used. Respective examples for the production of taxadien-
5a-ol72 and mevalonate76 are depicted. AtoB, acetoacetyl-CoA thiolase; HMGR, hydroxyl-methylglutaryl-CoA reductase; HMGS, hydroxyl-methylglutaryl-CoA 
synthase; G3P, glyceraldehyde 3-phosphate; GBD, GTPase binding domain; SH3, Src homology 3 domain; PDZ, post-synaptic density protein/Drosophila 
disc large tumor suppressor/zonula occludens-1 domain; PYR, pyruvate. (c) To obtain desirable phenotypes that are too complex to improve using rational 
approaches, metabolic evolution comes into play. The metabolic evolution process is composed of the iterative cycle of metabolic engineering and adaptive 
evolution, as demonstrated for succinate production52,77,78. (d) A mutant that has a desirable phenotype such as isobutanol tolerance48 can be obtained by 
adaptive evolution, which is characterized by the use of multi-omics tools including whole-genome resequencing. The beneficial mutations identified can be 
reintroduced into the strain to be engineered. (e) In multiplexed genome engineering, such as MAGE55, synthetic single-stranded DNA pools that contain 
all of the possible or desired mutations are introduced into the host strain, and numerous mutants can be simultaneously generated through homologous 
recombination. The desired mutant population is enriched by multiple rounds of MAGE. As a proof-of-concept experiment, an efficient lycopene-producing 
E. coli strain was developed55. DMAPP, dimethylallyl diphosphate; DXP, 1-deoxy-d-xylulose 5-phosphate; FPP, farnesyl pyrophosphate; HMBPP, 4-hydroxy-3-
methyl-but-2-enyl pyrophosphate; IPP, isopentenyl pyrophosphate; MEP, 2-C-methyl-d-erythritol 4-phosphate.
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capture all of the cellular metabolic characteristics. Furthermore, 
current algorithms mainly allow analysis of cells at a steady state 
because of insufficient information about the dynamics of gene 
expression and enzyme activities governed by the regulatory net-
work. Thus, development of more accurate genome-scale metabolic 
models, preferably those incorporating regulatory mechanisms, is 
the first priority on the to-do list of systems metabolic engineering.

Although several algorithms have been developed for design-
ing new enzymes and pathways for the biosynthesis of non-natural 
chemicals, much improvement is needed in design algorithms and 
strategies. Although whole-genome synthesis will become easier, 
robust genome design principles, including metabolic and gene reg-
ulatory optimization for supporting both cell growth and product 
formation, need to be developed. These challenges will be overcome 
as systems metabolic engineering becomes further upgraded with 
better in silico genome-scale simulation algorithms, more efficient 
multiplex large-scale genome manipulation, synthesis of a whole 
artificial genome for well-defined functions, creation of artificial 
codons and modified ribosomes to expand the blueprint of life and 
very fine modulation of multiple gene transcription and translation 
based on the knowledge we continuously accumulate.

All of these efforts will lead to the development of engineered 
cells having fully reconstructed cellular genetic and metabolic net-
works for rapid cell growth while maintaining optimal fluxes toward 
the formation of a desired product, high tolerance to the product, no 
byproduct formation, efficient use of cost-effective carbon sources 
at a high yield and high overall productivity. It is expected that an 
increasing number of chemicals and materials will be efficiently 
produced from renewable resources by microorganisms developed 
by systems metabolic engineering.
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